
Remarks: In dealing with spherical coordinates in general and with Legendre polynomials
in particular it is convenient to make the substitution c = cos θ. For example, this allows
use of the following simplification of the orthogonality relationship:

∫ π

0
Pn(cos θ)Pm(cos θ) sin θ dθ =

2

2n + 1
δnm =⇒

∫ +1

−1
Pn(c)Pm(c) dc =

2

2n+ 1
δnm (1)

Since θ = π/2 (the equator) corresponds to c = 0, symmetries that correspond to reflection
in the equatorial plane correspond to c → −c symmetry. So the statement

Pn(−c) = (−1)nPn(c) (2)

reports that the n-even Pn have even reflection symmetry whereas the n-odd Pn have odd
reflection symmetry. Finally note that since θ = 0 and π corresponds to c = ±1, the
statements Pn(1) = 1 and Pn(−1) = (−1)n report the behavior of Pn along the positive
and negative z axes respectively.

As shown in the text, we can write an arbitrary azimuthally-symmetric solution to Laplace’s
equation in spherical coordinates as:

φ(r, θ) =

∞
∑

n=0

(

Anr
n +

Cn

rn+1

)

Pn(cos θ) (3)

or equivalently

φ(r, c) =

∞
∑

n=0

(

Anr
n +

Cn

rn+1

)

Pn(c) (4)

Example 1: Consider the problem of finding φ inside a sphere (of radius R) where the
voltage on the surface of the sphere has been given as a known function V (θ) (which we
will use in the form V (c) ). First, since nothing singular is happening at the origin, Cn = 0
for all n. The An are determined by the requirement that φ and V agree if r = R:

V (c) = φ(R, c) =

∞
∑

n=0

AnR
nPn(c) (5)

If we multiply both sides by Pm(c) and integrate c from −1 to 1, we can calculate the lhs
(which of course depends on m) and the rhs simplifies because of orthogonality:

∫ +1

−1
V (c)Pm(c) dc =

∞
∑

n=0

AnR
n

∫ +1

−1
Pn(c)Pm(c) dc = AmRm 2

2m+ 1
(6)

so

Am =

∫ +1
−1 V (c)Pm(c) dc

Rm 2
2m+1

(7)

For example, if the applied voltage is +V in the northern hemisphere and−V in the southern
hemisphere (an odd function of c), we can immediately conclude that for n even An = 0,
and for n odd Mathematica says:

AnR
n 2

2n+ 1
= 2V

∫ +1

0
Pn(c) dc =

V
√
π

Γ(1− n/2) Γ((3 + n)/2)
(8)



In[1]:= A=2 Integrate[LegendreP[n,x],{x,0,1}]

Sqrt[Pi]

Out[1]= ---------------------------

n 3 + n

Gamma[1 - -] Gamma[-----]

2 2

Mathematica has provided a complex answer1 for a result that is just a simple rational
number. For your enjoyment, I’ll produce a form I can better understand, but in the end
we’ll let Mathematica use its own result.

I’ll begin by reporting some properties of the Gamma function:

Γ(x+ 1) = xΓ(x) (9)

Γ(n+ 1) = n! for n a positive integer (10)

Γ(1− x) =
π

sin(πx) Γ(x)
(11)

Γ(1/2) =
√
π (12)

(x)n = x(x+ 1)(x+ 2) · · · (x+ n− 1) =
Γ(x+ n)

Γ(x)
(13)

The last formula is for the shifted factorial2 or Pochhammer Symbol defined in class.

Note that n is odd which we will write as n = 2m − 1, so m = {1, 2, 3, . . .} corresponds to
n = {1, 3, 5, . . .}.

√
π

Γ(1− n/2) Γ((3 + n)/2)
=

sin(πn/2) Γ(n/2)√
π Γ((3 + n)/2)

=
(−1)m−1 Γ(m− 1/2)

Γ(1/2) Γ(m+ 1)
=

(−1)m 2 Γ(m− 1/2)

Γ(−1/2))Γ(m + 1)

= (−1)m
(

−1
2

)

m
2

m!
(14)

i.e.,
{

1,−1
4 ,

1
8 ,− 5

64 ,
7

128 ,− 21
512 , . . .

}

Back to Mathematica:

f[r_,c_]=Sum[A (2 n +1)/2 r^n LegendreP[n,c],{n,1,21,2}]

ContourPlot[f[Sqrt[x^2+z^2],z/Sqrt[x^2+z^2]],{x,0,.9},{z,-.9,.9},

Contours -> {-.9,-.8,-.7,-.6,-.5,-.4,-.3,-.2,-.1,0,.1,.2,.3,.4,.5,.6,.7,.8,.9},

ContourShading->False,RegionFunction->Function[{x, z, q},x^2+z^2<1 ],

AspectRatio->Automatic]

Example 2: Consider the problem of finding φ inside and outside a sphere (of radius R)
where the surface charge density on the surface of the sphere has been given as a known

1Part of the reason for this complex formula is that Mathematica is showing that n even produces zero
result. However it doesn’t really matter if you don’t recognize the answer as Mathematica can quickly
produce the rational number for any n you want.

2Note: (1)n = n! more generally (x)n is n terms multiplied together, starting with x with successive
terms one more than the previous.



function σ(θ) (which we will use in the form σ(c)). First, since nothing singular is happening
at the origin, for the inside solution Cn = 0 for all n. Since the potential must approach
zero as r → ∞, for the outside solution An = 0 for all n. Thus:

φ(r, θ) =































∞
∑

n=0

Anr
nPn(c) for r < R

∞
∑

n=0

Cn

rn+1
Pn(c) for r > R

(15)

Continuity of φ at r = R produces the requirement:

AnR
n =

Cn

Rn+1
(16)

The surface charge density can be related to the discontinuity in the radial component of
the electric field:

σ(θ) = ǫ0 (∂rφ |r=R− − ∂rφ |r=R+ ) (17)

= ǫ0

∞
∑

n=0

(

nAnR
n−1 + (n+ 1)CnR

−(n+2)
)

Pn(c) (18)

= ǫ0

∞
∑

n=0

(2n + 1)AnR
n−1Pn(c) (19)

(20)

The usual ‘Fourier Trick’ (multiply both sides by Pm(c) and integrate from−1 to 1 collapsing
the sum to a single term) allows Am to be calculated:

∫ +1

−1
σ(c)Pm(c) dc = ǫ0(2m+ 1)AmRm−1 2

2m+ 1
= ǫ02AmRm−1 (21)

Example 3: Often you can calculate φ along the z axis, but the off-axis calculation is
difficult or impossible. However you can expand φ(z) to produce the full φ(r, c) by a trick.
Taylor expand φ(z) to obtain a power series expansion:

φ(z) =

∞
∑

n=0

anz
n (22)

This formula must agree with the Legendre expansion evaluated on the z axis:

φ(r, c) =
∞
∑

n=0

Anr
nPn(c) =

∞
∑

n=0

anz
n on the z axis (23)

The fact that on axis c = ±1 and Pn(±1) = (±1)n allows easy comparison between these
two series. Agreement requires An (useful for φ off-axis) equals an (determined only knowing
φ on-axis).

For example, the potential on the z-axis for a ring charge (radius R, total charge Q) is
clearly

φ(z) =
Q

4πǫ0

[

z2 +R2
]

−1/2
=

Q

4πǫ0R

[

1 + (z/R)2
]

−1/2
=

Q

4πǫ0R

∞
∑

n=0

(

1
2

)

n
(−z2/R2)n

n!

(24)



we can conclude

An =



















(−1)n/2Q
(

1
2

)

n/2

4πǫ0 Rn (n/2)!
for n even

0 for n odd

(25)

f[r_,c_]=Sum[(-1)^(n/2) Pochhammer[1/2, n/2] r^n LegendreP[n,c]/(n/2)!,{n,0,20,2}]

ContourPlot[f[Sqrt[x^2+z^2],z/Sqrt[x^2+z^2]],{x,0,.9},{z,-.9,.9},Contours->16,

ContourShading->False,RegionFunction->Function[{x, z, q},x^2+z^2<.8 ],

PlotRangePadding->None,AspectRatio->Automatic]
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Figure 1: Isopotential contours for Example 1 (left) and Example 3 (right)



Homework 1: A physicist aims to subject a sample to a pure quadrupole field (n = 2)
inside a spherical cavity. The plan is to charge the top and bottom caps of the sphere to
1 V and the remaining band around the equator to a potential of –1 V. Because the applied
voltage V (θ) is symmetric, terms An = 0 for n odd. The first important term will then
be quadrupole A2 (A0 corresponds to a constant voltage and so makes no electric field).
It would be nice (but not possible) to make A2 the only non-zero term. The best we can
do is make A4 = 0. Problem: Find the band angle, θb that makes A4 = 0. Find A6 in
this circumstance. Find the values: A0, A2 and A6. Put the pieces together to express the
potential inside the sphere. Have Mathematica produce a contour plot of that voltage.

Hint:

A4 ∝
∫ +1

−1
V (c)P4(c) dc = 2

{

−
∫ cb

0
P4(c) dc+

∫ 1

cb

P4(c) dc

}

(26)

Use Mathematica (or a root-finding calculator) to find the value cb to make this quality
zero.

z

θb

1 V

1 V

−1 V

Homework 2: In a region where there are no currents flowing, we can define a magnetic
potential that is exactly analogous to the electric potential:

B = −∇φ where: ∇2φ = 0 (27)

For a pair of Helmholtz coils (two identical coaxial coils with centers separated by R; recall
Phys 200 labs with them), the magnetic potential along the axis is given by:

φ(z) =
5
√
5R

16

[

z −R/2
√

R2 + (z −R/2)2
+

z +R/2
√

R2 + (z +R/2)2

]

(28)

Recall from the 200 lab that the spacing of the coils is designed to produce a particularly
uniform field between the coils, and if you reverse the current in one coil you produce a
diverging B with B = 0 at the center (in short a quadrupole field). Use Mathematica to
series expand φ around the origin. Use that series to produce φ(r, cos θ) in a region near
the origin. Make a contour plot of φ to confirm that it is nearly uniform.

If you have reversed coils a distance b above and below the origin, φ is given by:

φ(z) =

[

z − b
√

R2 + (z − b)2
− z + b
√

R2 + (z + b)2

]

(29)

What value of b will produce a particularly pure quadrupole field? Make a contour plot of
φ to confirm that it is nearly quadrupole.



Homework 3: Consider a problem analogous to Helmholtz coils but in electrostatics with
charged rings. You have a ring (radius R, centered on the z axis, in a plane parallel to the
xy plane) with charge +Q at distance b above the origin, and a similar ring with center at
z = −b with charge −Q. Find b that will produce the most uniform possible E field in the
vicinity of the origin. Explain why the voltage on the z axis is given by:

φ(z) =
Q

4πǫ0

[

1
√

R2 + (z − b)2
− 1
√

R2 + (z + b)2

]

(30)

Expand this result in a power series in z. The term linear in z corresponds to rP1(c) (why?)
and further terms produce a non-uniform E. Determine the value of b which makes as many
of these further terms zero. Make a contour plot of φ(r, cos θ) (for R = 1) to confirm that
it is nearly uniform.

Example 4: In the case of cylindrical coordinates where φ(r, θ) (and not z), we have:

φ(r, θ) = A0 + C0 ln(r) +
∞
∑

n=1

(

Anr
n + Cnr

−n
) (

an cos(nθ) + cn sin(nθ)
)

(31)

Note that An, Cn, an, cn are not independent: for example you could multiply both An, Cn

by five and divide both an, cn by five and have exactly the same solution. Most commonly
one of the terms in parenthesis is reduced to a single term. As usual we have orthogonality
as:

∫ +π

−π
cos(nθ) sin(mθ) dθ = 0 (32)

∫ +π

−π
cos(nθ) cos(mθ) dθ = π δmn (33)

∫ +π

−π
sin(nθ) sin(mθ) dθ = π δmn (34)

We seek φ outside a cylinder of radius R on which the potential is known to be

V (θ) = cos2(θ) (35)

Since the source extends to infinity, we cannot in general take φ at infinity to be zero;
thus the meaning of “the potential” on the cylinder is ambiguous; a convenient solution
is to define the constant A0 = A′

0 − C0 ln(R) (a further benefit is the result makes sense
dimensionally).

φ(r, θ) = A′

0 + C0 ln(r/R) +

∞
∑

n=1

(

Anr
n +Cnr

−n
) (

an cos(nθ) + cn sin(nθ)
)

(36)

Note that in this form the value of C0 has absolutely no effect on the value of the voltage
at r = R; A bit of thought should convince you that C0 is determined by the net charge-
per-length on the cylinder. (Recall: voltage for a line charge: φ = (−λ/2πǫ0) ln(r).) We
will take C0 = 0.

Since the V (θ) is even in θ, cn = 0; since the electric field should be regular at infinity
An = 0. Thus:

φ(r, θ) = A′

0 +

∞
∑

n=1

Cnr
−n cos(nθ) (37)



Since φ(R, θ) must agree with V (θ) we have:

cos2(θ) = φ(R, θ) = A′

0 +
∞
∑

n=1

CnR
−n cos(nθ) (38)

The Cn could now be determined using the “Fourier Trick”, but a faster way is to use a
trig identity to immediately write cos2(θ) in terms of cos(nθ):

cos2(θ) =
1

2
+

1

2
cos(2θ) = A′

0 +

∞
∑

n=1

CnR
−n cos(nθ) (39)

Simple inspection (rather than integration, but of course integration produces the same
result):

1

2
= A′

0 (40)

0 = C1R
−1 cos(θ) (41)

1

2
cos(2θ) = C2R

−2 cos(2θ) (42)

and Cn = 0 for n > 2. So the final result is:

φ(r, θ) =
1

2

[

1 + cos(2θ) (R/r)2
]

(43)

I hope it is immediately clear that this potential solves Laplace’s equation, agrees with V (θ)
when r = R and represents a cylinder with a simple quadrupole.

x

y

a

b

V(y)

V=0

Example 5: Consider an infinite (in the z directions) rectangular gutter with cross-section
between (0, 0) and (a, b). Three of the sides of the gutter are grounded; the fourth, (a, y)
with y ∈ (0, b) has a specified voltage V (y). Separation of variables yields a general solution:

φ(x, y) =

∞
∑

n=1

An sin
(nπy

b

) sinh
(

nπx
b

)

sinh
(

nπa
b

) (44)

We have orthogonality in the form:

∫ b

0
sin
(nπy

b

)

sin
(mπy

b

)

dy =
1

2
b δmn (45)



Requiring φ(x, y) to agree with V (y) when x = a yields:

V (y) = φ(a, y) =
∞
∑

n=1

An sin
(nπy

b

)

(46)

With the “Fourier Trick” yielding:

∫ b

0
V (y) sin

(mπy

b

)

dy =
1

2
b Am (47)

Consider, for example, the case V (y) = 1 (constant):

∫ b

0
sin
(mπy

b

)

dy =

[

− cos
(mπy

b

)

mπ
b

]b

0

=
b

mπ
[1− (−1)m] (48)

So:

φ(x, y) =
4

π

∑

n odd

1

n
sin
(nπy

b

) sinh
(

nπx
b

)

sinh
(

nπa
b

) (49)
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Figure 2: Clockwise from upper left: isopotential contours for Example 5, a slice of Example
5 φ along (x, .5), a slice of Example 5 φ along (1.9, y), isopotential contours for Example 4

Homework 4: Consider an infinite cylindrical shell of radius R = 1, coaxial with the z
axis. The voltage on the surface of the shell is given by:

V (θ) =







+1 for |θ| < π/4
−1 for |θ − π| < π/4
0 elsewhere

(50)

Using ‘Fourier’s Trick’, find the series solution to Laplace’s equation inside this cylinder.
(Hint: Is this V (θ) even or odd?)



A nice feature of this problem is that Laplace’s equation can be solved exactly:

φ(x, y) =
1

π

[

arctan

( √
2 (x+ y)

1− (x2 + y2)

)

+ arctan

( √
2 (x− y)

1− (x2 + y2)

)]

(51)

D[D[phi[x,y],x],x]+D[D[phi[x,y],y],y]

Simplify[%]

Out[6]= 0

which allows you to compare truncated versions of your infinite series to the exact result.
Lets pick the point p = (x, y) = (.5, 0) as a typical point and compare results. Calculate
φ(p) when your sum is truncated to one, two, three, . . . , six non-zero terms. Display these
results along with the exact result. An easy way to do this is to include the sum-limit in
the function definition:

phi[x_,y_]=(ArcTan[Sqrt[2](x+y)/(1-(x^2+y^2))]+ArcTan[Sqrt[2](x-y)/(1-(x^2+y^2))])/Pi

phi2[r_,t_,m_]:=Sum[A[[n]]/Pi r^n Cos[n t],{n,1,2 m+1}]

Table[phi2[.5,0,m],{m,0,5}]

Table[phi2[.5,0,m]-phi[.5,0],{m,0,5}]
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Figure 3: A contour plot of the exact solution (left). A display showing the voltages on the
surface of the cylinder (right).


