
4. A simple model of a ring molecule consists of three equal masses m which slide without
friction on a fixed circular wire with radius R. The masses are connected by identical
springs with spring constant k. The angular positions of the masses (θ1, θ2, θ3) are
measured from a rest position in the clockwise sense as shown below (note that in the
below diagram θ2 would be negative).
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(a) Find the Lagrangian.

(b) Show that the mass matrix M and the spring constant matrix K are as shown
below:

M = mR2


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(c) The Euler equations for this system are:
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or, defining the vector Θ = (θ1, θ2, θ3)

M· Θ̈ = −K ·Θ

if we seek a periodic solution Θ = v eiωt, (where v is a constant vector and ω is
the constant angular oscillation frequency) we have:

ω2
M· v = K · v

Show that the vector v = (1, 1, 1) satisfies this equation for ω = 0.

(d) Show that the vector v = (0, 1,−1) satisfies this equation and find the corre-
sponding ω.


