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Hamilton’s Revenge

As described in the textbook, Euler Angles are a way to specify the configuration of a 3d
object. Starting from a fixed configuration the desired configuration is obtained by a three
step process:

1. rotation about the z axis by an angle φ

2. rotation about the y′ axis1 (i.e., the rotated y axis) by an angle θ

3. rotation about the z′′ axis (i.e., the doubly rotated z axis which, in the end, is the
body axis 3) by an angle ψ

I strongly recommend looking at the Wiki visualization (Euler2a.gif, author Juansempere
— note it uses an alternative angle sequence) and video (https://youtu.be/N7AVc5yYX-k
author Yudintsev or class web site 323 rotation sequence Euler.mp4 — note it swaps ψ
and φ). I hope it is clear that almost certainly the object did not achieve its configuration by
these three rotations — just as it’s unlikely that an object reached a particular position by
successive motions in the x, y and z directions. We are recording configuration not history.

The body-fixed frame (123), with aligned principal axes, is most convenient for calculation.
However, we often need to know what a body-fixed vector looks like in the inertial frame
(xyz). We define matrices to reverse the above three steps:

Mφ =





cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1



 (1)

Mθ =





cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)



 (2)

Mψ =





cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1



 (3)

where:




x
y
z



 = MφMθMψ





x1
x2
x3



 (4)

Note: To make the reverse transformation (i.e., (x, y, z) → (x1, x2, x3)) you would apply the
inverse matrices in the reverse order to (x, y, z). The inverse matrices are easily generated
by negating the angle (e.g., θ → −θ) or taking the matrix transpose.

We begin by using Mathematica to find the relation between φ̇, θ̇, ψ̇ and ω (in the body-fixed
frame).

1This is the convention of our textbook. Often — e.g., Goldstein’s Classical Mechanics and Wiki — the

second rotation is made about the x
′ axis. Warning: before you lift a formula from a textbook you need to

know which standard was used.



{0,0,dpsi}+Inverse[mpsi].{0,dtheta,0}+Inverse[mpsi].Inverse[mtheta].{0,0,dphi}

Simplify[%]

w=%

Out[7]= {dtheta Sin[psi] - dphi Cos[psi] Sin[theta],

> dtheta Cos[psi] + dphi Sin[psi] Sin[theta], dpsi + dphi Cos[theta]}

ω =





0
0

ψ̇



 +M−1

ψ





0

θ̇
0



+M−1

ψ M−1

θ





0
0

φ̇



 (5)

=
(

θ̇ sin(ψ)− φ̇ cos(ψ) sin(θ), θ̇ cos(ψ) + φ̇ sin(ψ) sin(θ), φ̇ cos(θ) + ψ̇
)

(6)

Given ω in the body-fixed frame it’s easy (for Mathematica) to calculate the kinetic energy:

T =
1

2
ω ·





I1 0 0
0 I1 0
0 0 I3



 · ω (7)

=
1

2
I1

(

φ̇2 sin2(θ) + θ̇2
)

+
1

2
I3

(

φ̇ cos(θ) + ψ̇
)2

(8)

The problem at hand is free precession. . . no external forces or potential energy; the La-
grangian is just the kinetic energy T . Notice that φ and ψ are cyclic (a.k.a., ignorable)
coordinates so the corresponding canonical (a.k.a., generalized) momenta are constants:

pψ =
∂T

∂ψ̇
= I3

(

φ̇ cos(θ) + ψ̇
)

(9)

pφ =
∂T

∂φ̇
= I3 cos(θ)

(

φ̇ cos(θ) + ψ̇
)

+ I1 φ̇ sin
2(θ) = pψ cos(θ) + I1 φ̇ sin

2(θ) (10)

Comparing to Eq. (6), see that pψ = L3 (i.e., the angular momentum in the body-fixed z
direction); at the end of this document we discovery pφ = Lz (i.e., the angular momentum in
the inertial frame z direction). Using these (constant) momenta we can rewrite the kinetic
energy much as in a Hamiltonian (currently we leave θ̇ alone):

T =
1

2
I1 θ̇

2 +
(pφ − pψ cos(θ))

2

2I1 sin
2(θ)

+
p2ψ
2I3

=
1

2
I1 θ̇

2 + V (θ)

This expression now just involves constants and θ and θ̇; furthermore it is itself a constant.
The usual logic of 1d conservation of energy applies to θ: turning points, equilibrium points,
etc. In particular the minimum of V (θ) must be a stable equilibrium point where θ̇ = 0, θ =
θ0 is a valid ‘motion’. Working in terms of c = cos θ note:

V (c) ∝
(pφ − pψc)

2

1− c2
+ constant

and V ′ = 0 has two solutions: c = pφ/pψ and c = pψ/pφ. From Eq. (10), see that the first
solution results in φ̇ = 0 in addition to θ̇ = 0. Applying those results to ω see that ω (and



hence L) is entirely along the body-fixed 3 axis. This is an object spinning in space with no
additional motion; c = pφ/pψ is just the static triangle of L. The kinetic energy is simply:
p2ψ/(2I3)—the kinetic energy of rotation just about the body-fixed 3 axis.

The second solution is more interesting. Using the constant values of pψ, pφ, cos θ find the
values of φ̇ and ψ̇:

Solve[{Pphi==Ppsi Ppsi/Pphi + dphi I1 (1- (Ppsi/Pphi)^2),

Ppsi== I3 (dpsi + dphi (Ppsi/Pphi))},{dpsi,dphi}]

(I1 - I3) Ppsi Pphi

Out[19]= {{dpsi -> --------------, dphi -> ----}}

I1 I3 I1

Thus a free body moving with

θ = θ0 (11)

φ = φ̇0 t =
pψ

I1 cos θ0
t =

I3ω3

I1 cos θ0
t (12)

ψ =
I1 − I3
I1

pψ
I3
t =

I1 − I3
I1

ω3 t ≡ Ωb t (13)

solves the equations of motion. Note that (θ, φ) define the direction of the body-fixed 3
axis in the inertial frame; evidently it is inclined (at θ0) and rotating at rate φ̇0. Using this
solution we can calculate ω in the body frame:

w /. {dphi->Ppsi/I1/Cos[theta], dpsi->(I1/I3-1)Ppsi/I1,dtheta->0}

Simplify[%]

ω =

(

−
pψ tan θ0

I1
cosψ,

pψ tan θ0
I1

sinψ,
pψ
I3

)

(14)

i.e., ω3 has a constant value of pψ/I3 while ω⊥ is rotating at rate Ωb and has constant
magnitude pψ tan θ0/I1. (If I1 > I3 this is a clockwise rotation about the 3 axis.) Since the
moment of inertia tensor is diagonal in the body frame, it should be clear L is rotating in
step with ω at an angle θ0 from the 3 axis. If I1 > I3 (prolate; pencil-like) ω circles inside
of Ls circling of the 3 axis. If I1 < I3 (oblate; pancake-like) L circles inside of ωs circling of
the 3 axis. Since the body is stationary in the body-fixed frame it may sound odd to talk
about the spin vector in that frame. Nevertheless that is exactly what we mean when we,
standing on the Earth, refer to the Earth’s spin axis. And in fact the Earth’s spin axis is
making a small loop around the ‘north pole’ (i.e., the Earth’s symmetry axis): the Chandler
wobble with θ0 ∼ 0.2” and a period of about 433 days.

If we transform L from the body-fixed frame back into the inertial frame and substitute in
the now known values for ψ̇, φ̇ and θ̇ = 0.



mphi.mtheta.mpsi.L

Simplify[%]

% /. {dphi->Pphi/I1, dpsi->Cos[theta](I1/I3-1)Pphi/I1,dtheta->0}

Simplify[%]

Out[24]= {0, 0, Pphi}

We conclude that this solution has L in the inertial frame aligned with the z axis. Note the
consequence: φ̇ = L/I1.

As stated above, Lz = pφ is true in general:

mphi.mtheta.mpsi.L

Collect[%[[3]],{I1,I3},Simplify]

2

Out[25]= I3 Cos[theta] (dpsi + dphi Cos[theta]) + dphi I1 Sin[theta]

where you’ll notice this result is exactly pφ

We have examined here the simplest solutions: those with θ̇ = 0 and found (A) a body
spinning with ω and L aligned with the 3 axis: a ‘statically spinning’ object with any
orientation, and (B) the motion of a body spinning with ω not aligned with the 3 axis (and
therefore L not aligned with either). We are dealing here with free (no-torque) rotations,
so of course L is always fixed in space. In solution (B) L is fixed in the z direction, so the
apparent motion of L around the 3-axis in the body-fixed frame, must, in the inertial frame
become, the 3-axis orbiting around the fixed L direction. . . a spacial wobble. How about the
more complex solutions with θ̇ 6= 0? These turn out to be cases like (B) but with L pointing
in a (fixed) direction not aligned with z. The wobbling motion about a non-aligned L makes
for complex θ dependence.

It’s undoubtedly more trouble than it’s worth, but as a practice example in the Hamiltonian
formulation, let’s try to show from the equations that L in the inertial frame is fixed. The
starting point for the Hamiltonian formulation is to express things in terms of canonical
momenta (replacing ‘velocities’ like θ̇). We already have pφ and pψ; pθ is actually the simple
one:

pθ =
∂T

∂θ̇
= I1θ̇ (15)

Solving for the ‘velocities’ we have:

φ̇ =
pφ − pψ cos(θ)

I1 sin
2(θ)

(16)

ψ̇ =
pψ
I3

−
pφ − pψ cos(θ)

I1 sin
2(θ)

cos(θ) (17)

θ̇ =
pθ
I1

(18)

Doing this in Mathematica looks odd because of a detail we need to take care of: pphi

currently means exactly the same thing as Eq. (10); it has no independent status as a



variable. We will assign Pphi to be that independent variable pφ which has substituted in
for Eq. (10).

Solve[{Ppsi==ppsi, Pphi==pphi, Ptheta==I1 dtheta},{dphi,dpsi, dtheta}]

subs=First[%]

2

Ppsi Cot[theta] Csc[theta] - Pphi Csc[theta]

Out[31]= {dphi -> -(---------------------------------------------),

I1

2

I1 Ppsi + I3 Ppsi Cot[theta] - I3 Pphi Cot[theta] Csc[theta]

dpsi -> -------------------------------------------------------------,

I1 I3

Ptheta

dtheta -> ------}

I1

We now substitute these formulas for ‘velocities’ into the KE we found earlier:

ke /. subs

Simplify[%]

H=Expand[%]

2 2 2 2

Ppsi Ptheta Ppsi Cot[theta]

Out[34]= ----- + ------- + ----------------- -

2 I3 2 I1 2 I1

2 2

Pphi Ppsi Cot[theta] Csc[theta] Pphi Csc[theta]

> ------------------------------- + -----------------

I1 2 I1

H =
p2θ
2I1

+
p2ψ
2I3

+
(pψ cos(θ)− pφ)

2

I1 sin
2(θ)

(19)

We also will need body-frame L in terms of pψ, pφ, pθ:

mphi.mtheta.mpsi.L

% /. subs

{Lx,Ly,Lz}=Simplify[%]

Out[37]= {Cos[phi] (-(Pphi Cot[theta]) + Ppsi Csc[theta]) - Ptheta Sin[phi],

> Ptheta Cos[phi] + (-(Pphi Cot[theta]) + Ppsi Csc[theta]) Sin[phi], Pphi}



L = ((pψ − pφ cos θ) cosφ/ sin θ − pθ sin θ, (pψ − pφ cos θ) sinφ/ sin θ + pθ cos θ, pφ) (20)

Reducing for the moment to a case with just one q and p: if we have a function, f(q, p), of
those q, p and we seek its time derivative, we have;

df

dt
=

∂f

∂q
q̇ +

∂f

∂p
ṗ (21)

=
∂f

∂q

∂H

∂p
−
∂f

∂p

∂H

∂q
(22)

More generally if we have lots of q, p, we simply need to sum all those derivatives:

df

dt
=

∑

i

(

∂f

∂qi

∂H

∂pi
−
∂f

∂pi

∂H

∂qi

)

(23)

≡ [f,H ] (24)

where the latter generalizes to become the definition for the Poisson bracket [f, g] of any two
functions of the qi, pi.

So in order to find L̇x, we need to calculate [Lx, H ]. Doing the sums is not as bad as you
might think because H just depends of 4 of the 6 qi, pi, and Lx depends on 5 of the 6:

D[Lx,theta] D[H,Ptheta] - D[Lx,Ptheta] D[H,theta] + D[Lx,phi] D[H,Pphi]

Simplify[%]

Out[40]= 0

So L̇x = 0.

In quantum mechanics the equivalent of Poisson brackets become quite important, so let’s
calculate a few classically. First the easy ones:

[qi, pj] = δij [qi, qj] = 0 [pi, pj] = 0 (25)

It will require more work to find [Li, Lj ]:

D[Lx,theta]D[Ly,Ptheta] - D[Lx,Ptheta] D[Ly,theta] +

D[Lx,phi] D[Ly,Pphi] - D[Lx,Pphi] D[Ly,phi]

Simplify[%]

Out[42]= Pphi

D[Ly,phi] D[Lz,Pphi]

Out[43]= Cos[phi] (-(Pphi Cot[theta]) + Ppsi Csc[theta]) - Ptheta Sin[phi]

-D[Lz,Pphi] D[Lx,phi]

Out[44]= Ptheta Cos[phi] + (-(Pphi Cot[theta]) + Ppsi Csc[theta]) Sin[phi]



so [Lx, Ly] = Lz, [Ly, Lz] = Lx, [Lz, Lx] = Ly, or more compactly:

[Li, Lj] = ǫijkLk (26)

How about the components of L in the body-fixed frame (I’m going to call them K1, K2, K3

so we don’t mix them up with the above Ls).

L /. subs

{K1,K2,K3}=Simplify[%]

Out[46]= {Cos[psi] (-Pphi + Ppsi Cos[theta]) Csc[theta] + Ptheta Sin[psi],

> Ptheta Cos[psi] + (-(Ppsi Cot[theta]) + Pphi Csc[theta]) Sin[psi], Ppsi}

K = (−(pφ − pψ cos θ) cosψ/ sin θ + pθ sinψ, (pφ − pψ cos θ) sinψ/ sin θ + pθ cosψ, pψ) (27)

D[K1,theta] D[K2,Ptheta] - D[K1,Ptheta] D[K2,theta] +

D[K1,psi] D[K2,Ppsi] - D[K1,Ppsi] D[K2,psi]

Simplify[%]

Out[48]= -Ppsi

D[K2,psi]D[K3,Ppsi]

Out[49]= Cos[psi] (-(Ppsi Cot[theta]) + Pphi Csc[theta]) - Ptheta Sin[psi]

-D[K3,Ppsi] D[K1,psi]

Out[50]= -(Ptheta Cos[psi]) + (-Pphi + Ppsi Cos[theta]) Csc[theta] Sin[psi]

so [K1, K2] = −K3, [K2, K3] = −K1, [K3, K1] = −K2, or more compactly:

[Ki, Kj] = −ǫijkKk (28)

Finally we should expect that H should have a simple, understandable form in terms of Ki:

K1^2+K2^2

Expand[%]

Simplify[%]

2 2 2

Out[54]= Ptheta + Ppsi Cot[theta] - 2 Pphi Ppsi Cot[theta] Csc[theta] +

2 2

> Pphi Csc[theta]

Notice that these exact same terms occur in H so the result is:

H =
K2

1
+K2

2

2I1
+
K2

3

2I3
(29)



Since Lz = pφ and there are no raw φ in K, we conclude [Lz,K] = 0. Similarly since K3 = pψ
and there are no raw ψ in L, we conclude [K3,L] = 0. How about the others e.g., [Lx,K]?

The product rule can be used to show:

[A,B C] = [A,B]C +B[A,C] (30)

which allows easy calculation (i.e., Mathematica not needed) of K̇i = [Ki, H ]:

K̇3 = [K3, H ] =
1

2I1
(2[K3, K1]K1 + 2[K3, K2]K2) = 0 (31)

K̇1 =
1

2I1
2[K1, K2]K2 +

1

2I3
2[K1, K3]K3 =

(

1

I3
−

1

I1

)

K3K2 = ΩbK2 (32)

K̇2 =
1

2I1
2[K2, K1]K1 +

1

2I3
2[K2, K3]K3 = −

(

1

I3
−

1

I1

)

K3K1 = −ΩbK1 (33)

From the first we can conclude that K3 is constant (and further since H is constant, K2

1
+K2

2

must also be constant). The following two show SHO at the angular frequency Ωb as in
Eqs.(13–14). So the K vector traces a cone at angular frequency Ωb and with constant 3
component.


