As described in the textbook, Euler Angles are a way to specify the configuration of a 3d object. Starting from a fixed configuration the desired configuration is obtained by a three step process:

- 1. rotation about the z axis by an angle ϕ
- 2. rotation about the x' axis¹ (i.e., the rotated x axis) by an angle θ
- 3. rotation about the z'' axis (i.e., the doubly rotated z axis which, in the end, is the body axis 3) by an angle ψ

I strongly recommend looking at the Wiki visualizations (Euler.gif, author Juansempere; also copied to the class web site) to appreciate these rotations. I hope it is clear that almost certainly the object did not achieve its configuration by exactly these three rotations just as it's unlikely that an object reached a particular position by successive motions in the x, y and z directions. We are recording configuration not history.

The body-fixed frame (123) with principal axes aligned with the frame is most convenient for calculation; but we often need to know what a body-fixed vector looks like in the inertial frame (xyz) . We define matrices to reverse the above three steps:

$$
\mathcal{M}_{\phi} = \begin{pmatrix} \cos(\phi) & -\sin(\phi) & 0 \\ \sin(\phi) & \cos(\phi) & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$
 (1)

$$
\mathcal{M}_{\theta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}
$$
 (2)

$$
\mathcal{M}_{\psi} = \begin{pmatrix}\n\cos(\psi) & -\sin(\psi) & 0 \\
\sin(\psi) & \cos(\psi) & 0 \\
0 & 0 & 1\n\end{pmatrix}
$$
\n(3)

where:

$$
\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathcal{M}_{\phi} \mathcal{M}_{\theta} \mathcal{M}_{\psi} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}
$$
 (4)

Note: To make the reverse transformation (i.e., $(x, y, z) \rightarrow (x_1, x_2, x_3)$) you would apply the inverse matrices in the reverse order to (x, y, z) . The inverse matrices are easily generated by negating the angle (e.g., $\theta \rightarrow -\theta$) or taking the matrix transpose.

We begin by finding the relation between $\dot{\phi}$, $\dot{\theta}$, $\dot{\psi}$ and ω (in the body-fixed frame).

¹This is the convention of Goldstein's *Classical Mechanics* and Wiki; our textbook makes this second rotation about the y' axis with the warning that it is not standard. I'm going here with the standard

$$
\omega = \begin{pmatrix} 0 \\ 0 \\ \dot{\psi} \end{pmatrix} + \mathcal{M}_{\psi}^{-1} \begin{pmatrix} \dot{\theta} \\ 0 \\ 0 \end{pmatrix} + \mathcal{M}_{\psi}^{-1} \mathcal{M}_{\theta}^{-1} \begin{pmatrix} 0 \\ 0 \\ \dot{\phi} \end{pmatrix}
$$
(5)

$$
= \left(\dot{\phi} \sin(\psi) \sin(\theta) + \dot{\theta} \cos(\psi), \dot{\phi} \cos(\psi) \sin(\theta) - \dot{\theta} \sin(\psi), \dot{\phi} \cos(\theta) + \dot{\psi} \right) \tag{6}
$$

Given ω in the body-fixed frame it's easy (for *Mathematica*) to calculate the kinetic energy:

$$
T = \frac{1}{2} \boldsymbol{\omega} \cdot \begin{pmatrix} I_1 & 0 & 0 \\ 0 & I_1 & 0 \\ 0 & 0 & I_3 \end{pmatrix} \cdot \boldsymbol{\omega}
$$
 (7)

$$
= \frac{1}{2} I_1 \left(\dot{\phi}^2 \sin^2(\theta) + \dot{\theta}^2 \right) + \frac{1}{2} I_3 \left(\dot{\phi} \cos(\theta) + \dot{\psi} \right)^2 \tag{8}
$$

The problem at hand is free precession. . . no external forces or potential energy; the Lagrangian is just the kinetic energy T. Notice that ϕ and ψ are cyclic (a.k.a., ignorable) coordinates so the corresponding canonical (a.k.a., generalized) momenta are constants:

$$
p_{\psi} = \frac{\partial T}{\partial \dot{\psi}} = I_3 \left(\dot{\phi} \cos(\theta) + \dot{\psi} \right)
$$
\n(9)

$$
p_{\phi} = \frac{\partial T}{\partial \dot{\phi}} = I_3 \cos(\theta) \left(\dot{\phi} \cos(\theta) + \dot{\psi} \right) + I_1 \dot{\phi} \sin^2(\theta) = p_{\psi} \cos(\theta) + I_1 \dot{\phi} \sin^2(\theta) \tag{10}
$$

Comparing to Eq. (6), see that $p_{\psi} = L_3$ (i.e., the angular momentum in the body-fixed z direction); at the end of this document we discovery $p_{\phi} = L_z$ (i.e., the angular momentum in the inertial frame z direction). Using these (constant) momenta we can rewrite the kinetic energy much as in a Hamiltonian (but we will leave θ alone):

$$
T = \frac{1}{2} I_1 \dot{\theta}^2 + \frac{(p_{\phi} - p_{\psi} \cos(\theta))^2}{2I_1 \sin^2(\theta)} + \frac{p_{\psi}^2}{2I_3} = \frac{1}{2} I_1 \dot{\theta}^2 + V(\theta)
$$

This expression now just involves constants and θ and $\dot{\theta}$; furthermore it is itself a constant. The usual logic of 1d conservation of energy applies to θ : turning points, equilibrium points, etc. In particular the minimum of $V(\theta)$ must be an equilibrium point where $\theta = 0$. Working in terms of $c = \cos \theta$ note:

$$
V(c) \propto \frac{(p_{\phi} - p_{\psi}c)^2}{1 - c^2} + \text{constant}
$$

and $V' = 0$ has two solutions: $c = p_{\phi}/p_{\psi}$ and $c = p_{\psi}/p_{\phi}$ The first solution results in $\dot{\phi} = 0$ in addition to $\theta = 0$. Applying those results to ω see that ω (and hence **L**) are entirely along the body-fixed 3 axis. This is an object spinning in space with no additional motion. The kinetic energy is simply: p_v^2 $\frac{2}{\psi}/(2I_3)$ —the kinetic energy of rotation just about the body-fixed 3 axis.

The second solution is more interesting. Using the constant values of p_{ψ}, p_{ϕ} , cos θ find the values of $\dot{\phi}$ and $\dot{\psi}$:

Solve[{Pphi==Ppsi Ppsi/Pphi + dphi I1 (1- (Ppsi/Pphi)^2), Ppsi== I3 (dpsi + dphi (Ppsi/Pphi))},{dpsi,dphi}]

\n
$$
(I1 - I3)
$$
 Ppsi
\n Pphi \n

\n\n $\text{Out}[20] = \{ \text{dpsi} \rightarrow \text{---} \text{---} \text{---} \text{---}, \text{ dphi} \rightarrow \text{---} \}$ \n

\n\n I1 I3 \n

Thus a free body moves with

$$
\theta = \theta_0 \tag{11}
$$

$$
\phi = \dot{\phi}_0 t = \frac{I_3 \omega_3}{I_1 \cos \theta_0} t \tag{12}
$$

$$
\psi = -\cos\theta_0 \frac{I_3 - I_1}{I_3} \dot{\phi}_0 t = -\frac{I_3 - I_1}{I_1} \omega_3 t \tag{13}
$$

solves the equations of motion. Note that (θ, ϕ) define the direction of the body-fixed 3 axis; evidently it is inclined (at θ_0) and rotating at rate $\dot{\phi}_0$. In the body frame,

$$
\omega = \left(\frac{p_{\phi}\sin\theta_0}{I_1}\sin\psi, \ \frac{p_{\phi}\sin\theta_0}{I_1}\cos\psi, \ \frac{p_{\psi}}{I_3}\right) \tag{14}
$$

i.e., ω_3 has a constant value of p_{ψ}/I_3 while ω_{\perp} is rotating at rate $\dot{\psi}$ and has constant magnitude $p_{\phi} \sin \theta_0 / I_1$.

If we transform L from the body-fixed frame back into the inertial frame and substitute in the now know values for $\dot{\psi}, \dot{\phi}$ and $\dot{\theta} = 0$.

```
mphi.mtheta.mpsi.L
Simplify[%]
% /. {dphi->Pphi/I1, dpsi->Cos[theta](I1/I3-1)Pphi/I1,dtheta->0}
Simplify[%]
```

```
Out[24]= {0, 0, Pphi}
```
We conclude that this solution has **in the inertial frame aligned with the** z **axis.**

As stated above the fact that $L_z = p_\phi$ is true in general:

```
mphi.mtheta.mpsi.L
Collect[%[[3]],{I1,I3},Simplify]
                                                                     2
Out[28]= I3 Cos[theta] (dpsi + dphi Cos[theta]) + dphi I1 Sin[theta]
```
where you'll notice this result is exactly p_{ϕ}