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The problem at hand is a spinning top with gravitational potential energy mgRcos. (R is the
distance between the pivot-point—the origin—and the center of mass.) While Lagrangian is now a
bit more than just the kinetic energy T, ¢ and v are not in the PE and hence remain cyclic (a.k.a.,
ignorable) coordinates so the corresponding canonical (a.k.a., generalized) momenta are constants:
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Recall that py, = L3 (i.e., the angular momentum in the body-fixed z direction) and py = L. (i.e.,
the angular momentum in the inertial frame z direction). Using these (constant) momenta we can
rewrite the total energy much as in a Hamiltonian (but we will leave 6 alone):
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We now proceed to get to a less dimensioned form: we set the constants py, = Iia, py = I1b,
mgR/I; = ¢* where a,b,c all have units of angular frequency. We can then pull I; out of the
energy:
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This expression now just involves constants and 6 and 9; furthermore it is itself a constant. The
usual logic of 1d conservation of energy applies to §: turning points, equilibrium points, etc. In
particular the minimum of V' (6) must be an equilibrium point where § = 0. Working in terms of
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and V' = 0 is a cubic equation. Mathematica’s results for its three roots are complex and not of
much immediate help (i.e., not a short cut to the answer). However the usual expectations should

hold: Given a value for E’, 6 should oscillate between two turning points.

We proceed by solving the differential equations numerically. The easiest way to get the 6 equation
is to differentiate E’; since E’ is a constant the results must be zero:

e=theta’ [t]"2/2 + (b-a Cos[thetalt]])~2/(2 Sin[thetal[t]] 2)+
c”2 Cos[theta[t]] + I1 a~2/(2 I3)
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The differential equation for ¢ follows from Eq. (4) above:
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Together # and ¢ define the direction of the body 3 axis in the inertial frame. We plot below the
location of the tip of this axis. (The v motion is difficult to see in a spinning body. Do note that
unlike free precession, (b and 1/1 are not a constants.) If the spinning top is released (without a
push) the initial conditions are: ¢ =0, 0 =0, 8 =y, b = acos(fy). (The initial value of ¢ doesn’t
occur in the energy and can be taken to be any value, in this case zero.)

solution=NDSolve [Evaluate[ {tt==0,
phi’ [t]==(b- a Cos[theta[t]])/Sin[thetal[t]]"2, phi[0]==0,theta’[0]==0,
theta[0]==thetal} /. {b->40 Cos[1.], thetaO->1, c->10, a->40}],{theta,phil},{t,0,3}]

ParametricPlot3D[
Evaluate[{Sin[theta[t]]Cos[phil[t]],Sin[thetal[t]]Sin[phi[t]],Cos[thetal[t]]}/. solution],
{t,0,3}]

Plot[Evaluate[ thetalt] /. solution],{t,0,3}]

Plot[Evaluate[ (b-a Cos[th])~2/(2(1-Cos[th]~"2)) + c¢~2 Cos[th] /.
{b—>40 Cos[1.], c—->10, a—>40}], {th,.95,1.2}]

D[(b-a u)"2/(2(1-u"2)) + c~2 u,ul]
% /. {c->10, a->40, u->Cos[1.]1}
FindRoot [%,{b,40 Cos[1.]1}]

Plot[Evaluate[ (b-a Cos[th])~2/(2(1-Cos[th]~2)) + c~2 Cos[th] /. {b->23.4, c->10, a->40}]
,{th,.95,1.2}]

solution=NDSolve[Evaluate[ {tt==0,
phi’ [t]==(b- a Cos[thetal[t]])/Sin[thetal[t]]"2, phi[0]==0,theta’[0]==0,
theta[0]==thetaO} /. {b->23.4, thetaO->1, c->10, a->40}],{theta,phil},{t,0,3}]

ParametricPlot3D[
Evaluate[{Sin[theta[t]]Cos[phil[t]],Sin[thetal[t]]Sin[phi[t]],Cos[thetal[t]]}/. solution],
{t,0,3}]

Suggestions: keeping b = a cos 8y let a range from 1 to 80. Produce a non-zero initial qﬁ by letting
b > acosfy. Plot the effective potential, graphically find the expected range of 6 oscillation and
compare to the differential equation results. Find a b value that puts 8y at a minimum of the
effective potential. Try non-zero values of initial 6.

Remark: Under the no-push initial conditions, the classically allowed region is defined by:
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The roots of the resulting cubic determine the turning points.

V(u) = u < Pug (10)



