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The problem at hand is a spinning top with gravitational potential energy mgR cos θ. (R is the
distance between the pivot-point—the origin—and the center of mass.) While Lagrangian is now a
bit more than just the kinetic energy T , φ and ψ are not in the PE and hence remain cyclic (a.k.a.,
ignorable) coordinates so the corresponding canonical (a.k.a., generalized) momenta are constants:
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Recall that pψ = L3 (i.e., the angular momentum in the body-fixed z direction) and pφ = Lz (i.e.,
the angular momentum in the inertial frame z direction). Using these (constant) momenta we can
rewrite the total energy much as in a Hamiltonian (but we will leave θ̇ alone):
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We now proceed to get to a less dimensioned form: we set the constants pψ = I1a, pφ = I1b,
mgR/I1 = c2 where a, b, c all have units of angular frequency. We can then pull I1 out of the
energy:
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This expression now just involves constants and θ and θ̇; furthermore it is itself a constant. The
usual logic of 1d conservation of energy applies to θ: turning points, equilibrium points, etc. In
particular the minimum of V (θ) must be an equilibrium point where θ̇ = 0. Working in terms of
u = cos θ note:
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and V ′ = 0 is a cubic equation. Mathematica’s results for its three roots are complex and not of
much immediate help (i.e., not a short cut to the answer). However the usual expectations should
hold: Given a value for E′, θ should oscillate between two turning points.

We proceed by solving the differential equations numerically. The easiest way to get the θ equation
is to differentiate E′; since E′ is a constant the results must be zero:

e=theta’[t]^2/2 + (b-a Cos[theta[t]])^2/(2 Sin[theta[t]]^2)+

c^2 Cos[theta[t]] + I1 a^2/(2 I3)

D[%,t]

%/theta’[t]

tt=Simplify[%]
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(
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)

− a2 cot3(θ) + ab csc(θ) + 2ab cot2(θ) csc(θ)− c2 sin(θ) = 0 (8)

The differential equation for φ follows from Eq. (4) above:
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sin2 θ
(9)

Together θ and φ define the direction of the body 3 axis in the inertial frame. We plot below the
location of the tip of this axis. (The ψ motion is difficult to see in a spinning body. Do note that
unlike free precession, φ̇ and ψ̇ are not a constants.) If the spinning top is released (without a
push) the initial conditions are: φ̇ = 0, θ̇ = 0, θ = θ0, b = a cos(θ0). (The initial value of φ doesn’t
occur in the energy and can be taken to be any value, in this case zero.)

solution=NDSolve[Evaluate[ {tt==0,

phi’[t]==(b- a Cos[theta[t]])/Sin[theta[t]]^2, phi[0]==0,theta’[0]==0,

theta[0]==theta0} /. {b->40 Cos[1.], theta0->1, c->10, a->40}],{theta,phi},{t,0,3}]

ParametricPlot3D[

Evaluate[{Sin[theta[t]]Cos[phi[t]],Sin[theta[t]]Sin[phi[t]],Cos[theta[t]]}/. solution],

{t,0,3}]

Plot[Evaluate[ theta[t] /. solution],{t,0,3}]

Plot[Evaluate[ (b-a Cos[th])^2/(2(1-Cos[th]^2)) + c^2 Cos[th] /.

{b->40 Cos[1.], c->10, a->40}], {th,.95,1.2}]

D[(b-a u)^2/(2(1-u^2)) + c^2 u,u]

% /. {c->10, a->40, u->Cos[1.]}

FindRoot[%,{b,40 Cos[1.]}]

Plot[Evaluate[ (b-a Cos[th])^2/(2(1-Cos[th]^2)) + c^2 Cos[th] /. {b->23.4, c->10, a->40}]

,{th,.95,1.2}]

solution=NDSolve[Evaluate[ {tt==0,

phi’[t]==(b- a Cos[theta[t]])/Sin[theta[t]]^2, phi[0]==0,theta’[0]==0,

theta[0]==theta0} /. {b->23.4, theta0->1, c->10, a->40}],{theta,phi},{t,0,3}]

ParametricPlot3D[

Evaluate[{Sin[theta[t]]Cos[phi[t]],Sin[theta[t]]Sin[phi[t]],Cos[theta[t]]}/. solution],

{t,0,3}]

Suggestions: keeping b = a cos θ0 let a range from 1 to 80. Produce a non-zero initial φ̇ by letting
b > a cos θ0. Plot the effective potential, graphically find the expected range of θ oscillation and
compare to the differential equation results. Find a b value that puts θ0 at a minimum of the
effective potential. Try non-zero values of initial θ̇.

Remark: Under the no-push initial conditions, the classically allowed region is defined by:

V (u) =
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2(1− u2)
+ c2u < c2u0 (10)

The roots of the resulting cubic determine the turning points.


