In Atwood's Machine two masses $(m_1 \& m_2)$, connected by a string, hang off opposite ends of a frictionless pulley (radius R; moment of inertia I). If m_1 moves up a distance x the pulley turns an angle $\phi = x/R$ (why?) and the mass m_2 falls a distance x. Careful consideration of forces and torques in 191 showed that the acceleration (\ddot{x}) was given by:

$$
\ddot{x} = \frac{(m_2 - m_1)g}{m_1 + m_2 + I/R^2}
$$

- 1. Make three free body diagrams showing and naming (a) all the forces on m_1 , (b) all the forces on m_2 , and (c) all the torques on the pulley. (Use the pulley's center as the origin for all torques.)
- 2. Write down the energy (KE+PE) of the entire system in terms of x and \dot{x} .
- 3. Since gravity is a conservative force the above energy should be a constant and hence its time derivative should be zero. Take the time derivative of your (2) result and derive the above formula for the acceleration \ddot{x} .
- 4. Is there a gravitational torque on m_1 (as always, use the pulley's center as the origin)? If the gravitational torque is non-zero, report its direction.
- 5. Does m_1 have angular momentum (use the pulley's center as the origin)? If the angular momentum is non-zero report the direction of its angular momentum (assume $\dot{x} > 0$).
- 6. Now consider the net external torque on the entire system and the time derivative of the total angular momentum (i.e., the angular momentum of m_1 , m_2 , and the pulley together). Use this to again derive the top equation for \ddot{x} .

