T6B.1:

$$
\frac{1}{T} = \frac{\partial S}{\partial U} \approx \frac{\Delta S}{\Delta U}
$$

$$
T \approx \frac{\Delta U}{\Delta S} = \frac{35 \text{ J}}{0.1 \text{ J/K}} = 350 \text{ K}
$$

T6B.5: According to Eq. T6.32 the energy levels of the orbitting electron in the H-atom are given by:

$$
E_n = \frac{-13.6 \text{ eV}}{n^2}
$$

where $n = 1$ is the ground state and $n = 2$ is the first excited state. So $\Delta E = -13.6/4 + 13.6 = 10.2$ eV.

$$
\frac{\Pr(E_2)}{\Pr(E_1)} = e^{-\Delta E/kT} = \exp\left(\frac{-10.2 \cdot 1.6022 \times 10^{-19}}{1.3807 \times 10^{-23} \cdot 9500}\right) = 3.88 \times 10^{-6}
$$

where I've used the conversion factor: 1.6022×10^{-19} J/eV. As discussed on p. 107 there are actually four $n = 2$ states $(2s, 2p_x, 2p_y, 2p_z)$, each one of which would have the above probability, so the total probability of all $n = 2$ states is $4 \times 3.88 \times 10^{-6} = 1.55 \times 10^{-5}$ FYI: this fraction is small but quite measureable—about $3000 \times$ the similar fraction in the Sun.

T6S.4: Note: $S = k \ln(\Omega) = k(N \ln V + \frac{3}{2} N \ln U + \text{constant})$

$$
\frac{1}{T} = \frac{\partial S}{\partial U} = k \frac{\partial \ln \Omega}{\partial U} = \frac{3}{2} N k \frac{\partial \ln U}{\partial U} = \frac{\frac{3}{2} N k}{U}
$$

$$
U = \frac{3}{2} N k T
$$

T6S.7: $E_n = \hbar \omega \left(n + \frac{1}{2} \right)$, for $n = 0, 1, 2 \dots$

$$
Z = \sum_{n=0}^{\infty} \exp(-E_n/kT) = \exp(-\hbar\omega/2kT) \sum_{n=0}^{\infty} \exp(-\hbar\omega n/kT)
$$

This series can actually be exactly summed as it is geometric: define $r = \exp(-\hbar\omega/kT)$, then:

$$
Z = \sqrt{r} \sum_{n=0}^{\infty} r^n = \frac{\sqrt{r}}{1-r} = \frac{1}{1/\sqrt{r} - \sqrt{r}} = \frac{1}{2} \frac{2}{\exp(+\hbar\omega/2kT) - \exp(-\hbar\omega/2kT)} = \frac{1}{2} \frac{1}{\sinh(\hbar\omega/2kT)}
$$

I'll take "room temperature" to be $20^{\circ}C = 293$ K, in which case:

$$
\hbar\omega/kT = \frac{1.0546 \times 10^{-34} \cdot 3 \times 10^{14}}{1.3807 \times 10^{-23} \cdot 293} = 7.8207
$$

Pr(E_n) = $\frac{e^{-E_n/kT}}{Z} = e^{-E_n/kT} \cdot (2\sinh(\hbar\omega/2kT))$
Pr(E₀) = $e^{-0.5 \cdot 7.8207} \cdot (2\sinh(7.8207/2)) = 0.9995986$
Pr(E₁) = $e^{-1.5 \cdot 7.8207} \cdot (2\sinh(7.8207/2)) = 0.0004012$
Pr(E₂) = $e^{-2.5 \cdot 7.8207} \cdot (2\sinh(7.8207/2)) = 1.61 \times 10^{-7}$

Note: approximation of Z by adding three terms:

$$
Z = \frac{1}{2\sinh(\hbar\omega/2k)} = \frac{1}{2\sinh(7.8207/2)} = 2.00415 \times 10^{-2}
$$

= $\sqrt{r}\sum_{n=0}^{\infty} r^n$ where: $r = \exp(-\hbar\omega/k) = \exp(-7.8207) = .00040134$
 $\approx 2.00335 \times 10^{-2} (1 + .00040134 + 1.61 \times 10^{-7}) = 2.00335 \times 10^{-2} (1.00040150) = 2.00415 \times 10^{-2}$

Boltzmann_Factor.problems.txt

A. The Boltzmann factor is:

 N_1 $\frac{N_1}{N_0} = e^{-\Delta E/kT}$

For HCl:

$$
\frac{\Delta E}{kT} = \frac{.37 \cdot 1.6022 \times 10^{-19}}{1.3807 \times 10^{-23} \cdot 298} = 14.4
$$

$$
\frac{N_1}{N_0} = e^{-14.4} = 5.53 \times 10^{-7}
$$

For I_2 :

$$
\frac{\Delta E}{kT} = \frac{.027 \cdot 1.6022 \times 10^{-19}}{1.3807 \times 10^{-23} \cdot 298} = 1.05
$$

$$
\frac{N_1}{N_0} = e^{-1.05} = 0.349
$$

Only I_2 is vibrationally excited so (at this temperature) only it would have additions to f for vibrations.