
35-21. The maxima of a two-slit interference pattern are at angles θ given by d sin θ = mλ, where d is the
slit separation, λ is the wavelength, and m is an integer. If θ is small, sin θ may be replaced by θ in
radians. Then, dθ = mλ. The angular separation of two maxima associated with different wavelengths
but the same value of m is ∆θ = (m/d)(λ2 − λ1), and their separation on a screen a distance D away
is

∆y = D tan ∆θ ≈ D ∆θ =

[

mD

d

]

(λ2 − λ1)

=

[

3(1.0 m)

5.0 × 10−3 m

]

(600 × 10−9 m − 480 × 10−9 m) = 7.2 × 10−5 m .

The small angle approximation tan∆θ ≈ ∆θ (in radians) is made. Without the small angle approxi-
mation:

D tan(arcsin(mλ1/d)) − D tan(arcsin(mλ2/d)) = 7.20 × 10−5 m

35-27. Consider the two waves, one from each slit, that produce the seventh bright fringe in the absence of
the mica. They are in phase at the slits and travel different distances to the seventh bright fringe,
where they have a phase difference of 2πm = 14π. Now a piece of mica with thickness x is placed in
front of one of the slits, and an additional phase difference between the waves develops. Specifically,
their phases at the slits differ by

2πx

λm
−

2πx

λ
=

2πx

λ
(n − 1)

where λm is the wavelength in the mica and n is the index of refraction of the mica. The relationship
λm = λ/n is used to substitute for λm. Since the waves are now in phase at the screen,

2πx

λ
(n − 1) = 14π

or

x =
7λ

n − 1
=

7(550 × 10−9 m)

1.58 − 1
= 6.64 × 10−6 m .

35-31. Adding the complex amplitudes: 10e0i + 15eiπ/6 + 5e−iπ/4 = (26.5, 3.96) = 26.8 6 8.50◦

Now:
N
∑

k=1

ak sin(ωt + δk) = Im

[(

N
∑

k=1

akeiδk

)

eiωt

]

= A sin(ωt + φ)

where:

N
∑

k=1

akeiδk = A eiφ, so here:

N
∑

k=1

ak sin(ωt + δk) = 26.8 sin(ωt + 8.50◦)

Plots:

Plot[4 Cos[ Pi (4.5/.580) (y/Sqrt[4^2+y^2]) ]^2,{y,-1,1}]

Plot[(Sin[4 Pi (4.5/.580) (y/Sqrt[4^2+y^2]) ]/Sin[ Pi (4.5/.580) (y/Sqrt[4^2+y^2]) ])^2,{y,-1,1},

PlotRange->All]

Plot[(Sin[16 Pi (4.5/.580) (y/Sqrt[4^2+y^2]) ]/Sin[ Pi (4.5/.580) (y/Sqrt[4^2+y^2]) ])^2,{y,-1,1},

PlotRange->All]

Plot[(Sin[64 Pi (4.5/.580) (y/Sqrt[4^2+y^2]) ]/Sin[ Pi (4.5/.580) (y/Sqrt[4^2+y^2]) ])^2,{y,-1,1},

PlotRange->All,PlotPoints->1000]
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35-36. Constructive:

2L =

(

m +
1

2

)

λ

n
where m = 0, 1, 2, . . .

or
2Ln

m + 1

2

= λ where m = 0, 1, 2, . . .

For m = 2, 3, 4, 5, λ = 672, 480, 373, 305 nm

Destructive:

2L = (m)
λ

n
where m = 1, 2, 3, . . .

or
2Ln

m
= λ where m = 1, 2, 3, . . .

For m = 3, 4, 5, λ = 560, 420, 336 nm

35-37. Light reflected from the front surface of the coating suffers a phase change of π rad while light reflected
from the back surface does not change phase. If L is the thickness of the coating, light reflected from
the back surface travels a distance 2L farther than light reflected from the front surface. The difference
in phase of the two waves is 2L(2π/λc) − π, where λc is the wavelength in the coating. If λ is the
wavelength in vacuum, then λc = λ/n, where n is the index of refraction of the coating. Thus, the
phase difference is 2nL(2π/λ)− π. For fully constructive interference, this should be a multiple of 2π.
We solve

2nL

(

2π

λ

)

− π = 2mπ

for L. Here m is an integer. The solution is

L =
(2m + 1)λ

4n
.

To find the smallest coating thickness, we take m = 0. Then,

L =
λ

4n
=

560 × 10−9 m

4(2.00)
= 7.00 × 10−8 m .



35-55. The situation is analogous to that treated in Sample Problem 35-6, in the sense that the incident light
is in a low index medium, the thin film has somewhat higher n = n2, and the last layer has the highest
refractive index. To see very little or no reflection, according to the Sample Problem, the condition

2L =

(

m +
1

2

)

λ

n2

where m = 0, 1, 2, . . .

must hold. The value of L which corresponds to no reflection corresponds, reasonably enough, to
the value which gives maximum transmission of light (into the highest index medium – which in this
problem is the water).

(a) If 2L =
(

m + 1

2

)

λ
n2

(Eq. 35-36) gives zero reflection in this type of system, then we might
reasonably expect that its counterpart, Eq. 35-37, gives maximum reflection here. A more careful
analysis such as that given in §35-7 bears this out. We disregard the m = 0 value (corresponding
to L = 0) since there is some oil on the water. Thus, for m = 1, 2, . . . maximum reflection occurs
for wavelengths

λ =
2n2L

m
=

2(1.20)(460 nm)

m
= 1104 nm , 552 nm , 368 nm . . .

We note that only the 552 nm wavelength falls within the visible light range.

(b) As remarked above, maximum transmission into the water occurs for wavelengths given by

2L =

(

m +
1

2

)

λ

n2

=⇒ λ =
4n2L

2m + 1

which yields λ = 2208 nm , 736 nm , 442 nm . . . for the different values of m. We note that
only the 442 nm wavelength (blue) is in the visible range, though we might expect some red
contribution since the 736 nm is very close to the visible range.

35-81. Let φ1 be the phase difference of the waves in the two arms when the tube has air in it, and let φ2 be
the phase difference when the tube is evacuated. These are different because the wavelength in air is
different from the wavelength in vacuum. If λ is the wavelength in vacuum, then the wavelength in air
is λ/n, where n is the index of refraction of air. This means

φ1 − φ2 = 2L

[

2πn

λ
−

2π

λ

]

=
4π(n − 1)L

λ

where L is the length of the tube. The factor 2 arises because the light traverses the tube twice, once on
the way to a mirror and once after reflection from the mirror. Each shift by one fringe corresponds to
a change in phase of 2π rad, so if the interference pattern shifts by N fringes as the tube is evacuated,

4π(n − 1)L

λ
= 2Nπ

and

n = 1 +
Nλ

2L
= 1 +

60(500 × 10−9 m)

2(5.0 × 10−2 m)
= 1.00030 .


