Answer 4 of the following 5 questions 'extra' answered problems will not contribute to your grade ## **Physical Constants** ## Properties of H₂O $$\begin{split} \sigma &= 5.6705 \times 10^{-8} \; \mathrm{W \cdot m^{-2} \cdot K^{-4}} \\ R &= 8.3145 \; \mathrm{J/(K \cdot mol)} \\ N_A &= 6.0221 \times 10^{23} \\ k_B &= 1.3807 \times 10^{-23} \; \mathrm{J/K} \\ &= 8.6173 \times 10^{-5} \; \mathrm{eV/K} \\ 1 \; \mathrm{eV} &= 1.6022 \times 10^{-19} \; \mathrm{J} \end{split} \qquad \begin{aligned} L_V &= 2256 \; \mathrm{J/g} \\ c_w &= 4.19 \; \mathrm{J/(g \cdot K)} \\ L_f &= 333 \; \mathrm{J/g} \\ c_i &= 2.22 \; \mathrm{J/(g \cdot K)} \\ \rho_w &= 1000 \; \mathrm{kg/m^3} \end{aligned}$$ - 1. In an insulated container, 250 g of ice at a temperature of -40° C is mixed with 50 g of water at 20°C). The final state is all solid ice. What will be the equilibrium temperature of this system? - 2. The entropy of 1 g of liquid water at $T = 25^{\circ}$ C and P = 100 kPa is 3.89 J/K. - (a) Find the number of microstates Ω . - (b) A small amount of heat dQ is added to the water and the number of microstates increases to a billion (10⁹) times the previous number. Find the change in entropy, dS. Assuming that the temperature remains constant (see following) find the amount of heat added, dQ. - (c) Assuming a constant specific heat, with that added heat, the temperature of the water will change. Find that change in temperature, dT. Do you think these changes are measurable? 3. Carbon dioxide (CO₂, that's 12 C and 16 O) is a linear molecule. Report/guess the contributions (cause and value) you expect to the number of degrees of freedom f at room temperature. Report the per-mole and per-gram constant-pressure specific heats (c_p) you expect for this f. CO₂'s lowest vibrationally excited states are at 0.083 eV and 2×0.083 eV above the ground state. Approximate the sum over all states by just these two excited states and the ground state. Find, at 300 K, the value of the partition function, Z, and the probability CO₂ is in the 0.083 eV state. - 4. Consider the following cycle using 1 kg of water vapor (which is <u>not</u> an ideal gas). Starting at a pressure of 2.5 MPa, volume 0.2778 m³, and temperature 1231°C: - The steam expands adiabatically to a volume of 0.5871 m³; pressure of 1 MPa. - In a constant-pressure (a.k.a., isobaric) process, the volume is compressed to 0.2579 m³. - \bullet An isothermal compression (at 300°C) reduces the volume to 0.1255 m³ - A straightline process returns to the initial state. The below graph displays this cycle. The below table reports state variables at the labeled points. | Ī | point | Volume | Pressure | Temperature | E_{int} | Entropy | |---|-------|---------|----------|---------------|-----------|---------| | | | (m^3) | (MPa) | $(^{\circ}C)$ | (kJ) | (kJ/K) | | Ī | 1 | 0.2778 | 2.5 | 1231 | 4531 | 8.916 | | | 2 | 0.5871 | 1.0 | 1000 | 4051 | 8.916 | | | 3 | 0.2579 | 1.0 | 300 | 2793 | 7.124 | | | 4 | 0.1255 | 2.0 | 300 | 2773 | 6.768 | - (a) Use the 1^{st} Law of Thermodynamics to calculate how much heat was removed in the isobaric compression $2 \rightarrow 3$? - (b) Use ΔS to find the heat removed in the isothermal compression $3 \to 4$ - (c) How much heat was added in the straightline expansion $4 \to 1$? - (d) Use all your heats to find the *net work* performed by this cycle. - 5. A selection of rows from a run of StatMech with $N_A = 150$ (atoms), $N_B = 50$, and total energy $U = 2000\varepsilon$ can be found as the final page of this exam. This Einstein solid has $\varepsilon = .005$ eV. - (a) Of the options listed, which value of U_A maximizes: (i) the entropy of A? (ii) the entropy of B?, (iii) the entropy of the combined system? - (b) Approximate $\frac{\partial S}{\partial U}$ as a (small) finite difference $\frac{\Delta S}{\Delta U}$. Use this result to find an equation for the temperature of this Einstein solid. Simplify your result using the properties of logarithms. Calculate T_A (the temperature of system A) using $\Delta U_A = 1\varepsilon$ for the following four situations: $U_A = 300\varepsilon$, $U_A = 500\varepsilon$, $U_A = 1500\varepsilon$, and $U_A = 1700\varepsilon$. Calculate T_B (the temperature of system B) using $\Delta U_B = 1\varepsilon$ for $U_B = 100\varepsilon$, $U_B = 300\varepsilon$. System B at $U_B = 100\varepsilon$ and system A at $U_A = 300\varepsilon$ have the same energy per atom; are you surprised that, under those conditions, they have approximately the same temperature? In the situation that maximizes the total entropy, we expect the temperatures of A and B to be approximately equal. Is this the case? - (c) Compare the change in temperature that results when 200ε of heat is added in the process: $U_A:300\varepsilon\to 500\varepsilon$ to the change in temperature that results in the process: $U_A:1500\varepsilon\to 1700\varepsilon$. Does the specific heat seem approximately constant? Compare the change in temperature that results when 200ε of heat is added in the process: $U_B:100\varepsilon\to 300\varepsilon$ to the change in temperature that results in the process: $U_A:300\varepsilon\to 500\varepsilon$. With three times fewer atoms you should expect that B's temperature change would be approximately three times that of A for the same Q (as $\Delta T = Q/mc$). Approximately so? StatMech: Calculation Results Number of atoms in System A = 150Number of atoms in System B = 50Total combined system energy = 2000 units Total number of microstates = 4.0915E+607 | U(A) | U(B) | Omega(A) | Omega(B) | Omega(AB) | Fraction of states | |----------------------------|--|--|---|---|---| | 0
1
2
3
4
5 | 2000
1999
1998
1997
1996
1995
1994 | 1
450
101475
15288900
1731467925
1.57217E+11
1.19223E+13 | 4.3751E+233
4.0718E+233
3.7893E+233
3.5263E+233
3.2815E+233
3.0535E+233
2.8413E+233 | 4.3751E+233
1.8323E+236
3.8452E+238
5.3914E+240
5.6818E+242
4.8007E+244
3.3875E+246 | 1.07E-374
4.48E-372
9.40E-370
1.32E-367
1.39E-365
1.17E-363
8.28E-362 | | 7 | 1993 | 7.76653E+14 | 2.6438E+233 | 2.0533E+248 | 5.02E-360 | | 8 | 1992 | 4.43663E+16 | 2.4599E+233 | 1.0914E+250 | 2.67E-358 | | 9 | 1991 | 2.25775E+18 | 2.2887E+233 | 5.1673E+251 | 1.26E-356 | | 10 | 1990 | 1.03631E+20 | 2.1293E+233 | 2.2066E+253 | 5.39E-355 | | 99 | 1901 | 1.1782E+111 | 2.9931E+230 | 3.5265E+341 | 8.62E-267 | | 100 | 1900 | 6.4685E+111 | 2.7755E+230 | 1.7954E+342 | 4.39E-266 | | 101 | 1899 | 3.5225E+112 | 2.5737E+230 | 9.0657E+342 | 2.22E-265 | | 199 | 1801 | 1.2623E+172 | 1.2998E+227 | 1.6408E+399 | 4.01E-209 | | 200 | 1800 | 4.0963E+172 | 1.2005E+227 | 4.9175E+399 | 1.20E-208 | | 201 | 1799 | 1.3247E+173 | 1.1087E+227 | 1.4687E+400 | 3.59E-208 | | 299 | 1701 | 1.1691E+217 | 3.6916E+223 | 4.3158E+440 | 1.05E-167 | | 300 | 1700 | 2.9189E+217 | 3.3943E+223 | 9.9073E+440 | 2.42E-167 | | 301 | 1699 | 7.2729E+217 | 3.1207E+223 | 2.2697E+441 | 5.55E-167 | | 399 | 1601 | 1.1783E+253 | 6.5269E+219 | 7.6907E+472 | 1.88E-135 | | 400 | 1600 | 2.5010E+253 | 5.9711E+219 | 1.4934E+473 | 3.65E-135 | | 401 | 1599 | 5.3013E+253 | 5.4625E+219 | 2.8958E+473 | 7.08E-135 | | 499 | 1501 | 1.6503E+283 | 6.7758E+215 | 1.1182E+499 | 2.73E-109 | | 500 | 1500 | 3.1322E+283 | 6.1639E+215 | 1.9306E+499 | 4.72E-109 | | 501 | 1499 | 5.9393E+283 | 5.6069E+215 | 3.3301E+499 | 8.14E-109 | | 599 | 1401 | 1.5758E+309 | 3.8510E+211 | 6.0683E+520 | 1.483E-87 | | 600 | 1400 | 2.7550E+309 | 3.4808E+211 | 9.5895E+520 | 2.344E-87 | | 601 | 1399 | 4.8132E+309 | 3.1460E+211 | 1.5142E+521 | 3.701E-87 | | 699 | 1301 | 1.1157E+332 | 1.1008E+207 | 1.2282E+539 | 3.002E-69 | | 700 | 1300 | 1.8314E+332 | 9.8767E+206 | 1.8088E+539 | 4.421E-69 | | 701 | 1299 | 3.0044E+332 | 8.8611E+206 | 2.6622E+539 | 6.507E-69 | | 799 | 1201 | 2.8434E+352 | 1.4261E+202 | 4.0550E+554 | 9.911E-54 | | 800 | 1200 | 4.4393E+352 | 1.2687E+202 | 5.6321E+554 | 1.377E-53 | | 801 | 1199 | 6.9278E+352 | 1.1286E+202 | 7.8184E+554 | 1.911E-53 | | 899 | 1101 | 7.8716E+370 | 7.3545E+196 | 5.7892E+567 | 1.415E-40 | | 900 | 1100 | 1.1799E+371 | 6.4779E+196 | 7.6430E+567 | 1.868E-40 | | 901 | 1099 | 1.7678E+371 | 5.7051E+196 | 1.0086E+568 | 2.465E-40 | | 999 | 1001 | 5.2923E+387 | 1.2807E+191 | 6.7779E+578 | 1.657E-29 | | 1000 | 1000 | 7.6685E+387 | 1.1148E+191 | 8.5487E+578 | 2.089E-29 | | 1001 | 999 | 1.1108E+388 | 9.7022E+190 | 1.0777E+579 | 2.634E-29 | | 1099 | 901 | 1.5829E+403 | 6.0852E+184 | 9.6322E+587 | 2.354E-20 | | 1100 | 900 | 2.2290E+403 | 5.2217E+184 | 1.1639E+588 | 2.845E-20 | | 1101 | 899 | 3.1380E+403 | 4.4800E+184 | 1.4058E+588 | 3.436E-20 | | 1199 | 801 | 3.3608E+417 | 5.9448E+177 | 1.9979E+595 | 4.883E-13 | | 1200 | 800 | 4.6182E+417 | 5.0124E+177 | 2.3149E+595 | 5.658E-13 | | 1201 | 799 | 6.3448E+417 | 4.2254E+177 | 2.6809E+595 | 6.552E-13 | | 1299 | 701 | 7.3230E+430 | 8.1081E+169 | 5.9375E+600 | 1.451E-07 | |--|--|--|--|--|---| | 1300 | 700 | 9.8522E+430 | 6.6868E+169 | 6.5880E+600 | 1.610E-07 | | 1301 | 699 | 1.3252E+431 | 5.5132E+169 | 7.3064E+600 | 1.786E-07 | | 1399 | 601 | 2.2018E+443 | 8.9082E+160 | 1.9615E+604 | 4.794E-04 | | 1400 | 600 | 2.9080E+443 | 7.1385E+160 | 2.0759E+604 | 5.074E-04 | | 1401 | 599 | 3.8400E+443 | 5.7184E+160 | 2.1959E+604 | 5.367E-04 | | 1499 | 501 | 1.1631E+455 | 3.4739E+150 | 4.0406E+605 | 0.0098755 | | 1500 | 500 | 1.5113E+455 | 2.6776E+150 | 4.0466E+605 | 0.0098902 | | 1501 | 499 | 1.9633E+455 | 2.0629E+150 | 4.0501E+605 | 0.0098988 | | 1599 | 401 | 1.3179E+466 | 1.3076E+138 | 1.7234E+604 | 4.212E-04 | | 1600 | 400 | 1.6877E+466 | 9.5339E+137 | 1.6091E+604 | 3.933E-04 | | 1601 | 399 | 2.1611E+466 | 6.9464E+137 | 1.5012E+604 | 3.669E-04 | | 1699 | 301 | 3.7852E+476 | 4.9399E+122 | 1.8699E+599 | 4.570E-09 | | 1700 | 300 | 4.7850E+476 | 3.3043E+122 | 1.5811E+599 | 3.864E-09 | | 1701 | 299 | 6.0480E+476 | 2.2077E+122 | 1.3352E+599 | 3.263E-09 | | 1799 | 201 | 3.1733E+486 | 2.0469E+102 | 6.4953E+588 | 1.588E-19 | | 1800 | 200 | 3.9649E+486 | 1.1755E+102 | 4.6606E+588 | 1.139E-19 | | 1801 | 199 | 4.9533E+486 | 6.7363E+101 | 3.3367E+588 | 8.155E-20 | | 1899 | 101 | 8.7578E+495 | 9.00449E+71 | 7.8860E+567 | 1.927E-40 | | 1900 | 100 | 1.0827E+496 | 3.63781E+71 | 3.9388E+567 | 9.627E-41 | | 1901 | 99 | 1.3385E+496 | 1.46097E+71 | 1.9555E+567 | 4.779E-41 | | 1990
1991
1992
1993
1994
1995
1996
1997
1998
1999 | 10
9
8
7
6
5
4
3
2 | 1.4198E+504
1.7400E+504
2.1322E+504
2.6126E+504
3.2009E+504
3.9213E+504
4.8034E+504
5.8833E+504
7.2055E+504
8.8239E+504 | 2.13192E+15
1.34083E+14
7.63764E+12
3.89179E+11
17463172650
675993780
21947850
573800
11325
150 | 3.0269E+519
2.3331E+518
1.6285E+517
1.0168E+516
5.5897E+514
2.6508E+513
1.0542E+512
3.3759E+510
8.1602E+508
1.3236E+507 | 7.398E-89 5.702E-90 3.980E-91 2.485E-92 1.366E-93 6.479E-95 2.577E-96 8.251E-98 1.994E-99 3.23E-101 | | 2000 | 0 | 1.0805E+505 | 1 | 1.0805E+505 | 2.64E-103 |