
20-4. (a) This may be considered a reversible process (as well as isothermal), so we use ∆S = Q/T where
Q = Lm with L = 333 J/g from Table 18-4. Consequently,

∆S =
(333 J/g)(12.0 g)

273 K
= 14.6 J/K .

(b) The situation is similar to that described in part (a), except with L = 2256 J/g, m = 5.00 g, and
T = 373 K. We therefore find ∆S = 30.2 J/K.

20-11. The connection between molar heat capacity and the degrees of freedom of a diatomic gas is given by
setting f = 5 in Eq. 19-51. Thus, CV = 5

2
R, Cp = 7

2
R, and γ = 7

5
. In addition to various equations

from Chapter 19, we also make use of Eq. 20-4 of this chapter. We note that we are asked to use
the ideal gas constant as R and not plug in its numerical value. We also recall that isothermal means
constant-temperature, so T2 = T1 for the 1 → 2 process.

(a) The gas law in ratio form (see Sample Problem 19-1) as well as the adiabatic relations Eq. 19-54
and Eq. 19-56 are used to obtain

p2 = p1

(

V1

V2

)

=
p1

3
,

p3 = p1

(

V1

V3

)γ

=
p1

31.4
≈ 0.215p1 ,

T3 = T1

(

V1

V3

)γ−1

=
T1

30.4
≈ 0.644T1 .

(d) process 1 → 2:

The work is given by Eq. 19-14: W = nRT1 ln (V2/V1) = RT1 ln 3 which is approximately
1.10nRT1 .

The energy absorbed as heat is given by the first law of thermodynamics: Q = ∆Eint + W =
0 + W ≈ 1.10nRT1 .

The internal energy change is ∆Eint = 0 since this is an ideal gas process without a temperature
change (see Eq. 19-45).

The entropy change is ∆S = Q/T1 = 1.10nR.

(h) process 2 → 3 :

The work is zero since there is no volume change.

The internal energy change is

Q = nCV (T3 − T2) = n

(

5

2
R

)(

T1

30.4
− T1

)

≈ −0.889nRT1 .

This (−0.889nRT1 ) is also the value for ∆Eint (by either the first law of thermodynamics or by
the definition of CV ).

For the entropy change, we obtain

∆S = nR ln

(

V3

V1

)

+ nCV ln

(

T3

T1

)

= nR ln(1) + n

(

5

2
R

)

ln

(

T1/30.4

T1

)

= 0 +
5

2
nR ln

(

3−0.4
)

≈ −1.10nR .

(l) process 3 → 1:

W = Q − ∆Eint = 0 − 5
2
nR(T1 − T3 ) = − 5

2
nRT1 (1 − 3−0.4) = −0.889nRT1

By definition, Q = 0 in an adiabatic process, which also implies an absence of entropy change
(taking this to be a reversible process).

The internal energy change must be −W (see above), so ∆Eint = +0.889nRT1 .



20-13. (a) We refer to the copper block as block 1 and the lead block as block 2. The equilibrium temperature
Tf satisfies m1c1(Tf − Ti,1) + m2c2(Tf − Ti,2) = 0, which we solve for Tf :

Tf =
m1c1Ti,1 + m2c2Ti,2

m1c1 + m2c2

=
(50 g)(.386 J/g·K)(400 K) + (100 g)(.128 J/g·K)(200 K)

(50 g)(.386 J/g·K) + (100 g)(.128 J/g·K)

= 320 K .

(b) Since the two-block system in thermally insulated from the environment, the change in internal
energy of the system is zero.

(c) The change in entropy is

∆S = ∆S1 + ∆S2 = m1c1 ln

(

Tf

Ti,1

)

+ m2c2 ln

(

Tf

Ti,2

)

= (50 g)(.386 J/g·K) ln

(

320 K

400 K

)

+ (100 g)(.128 J/g·K) ln

(

320 K

200 K

)

= +1.72 J/K .

20-16. In coming to equilibrium, the heat lost by the 100 cm3 of liquid water (of mass mw = 100 g and specific
heat capacity cw = 4.190 J/g·K) is absorbed by the ice (of mass mi which melts and reaches Tf > 0◦C).
We begin by finding the equilibrium temperature:

∑

Q = 0

Qwarm water cools + Qice warms to 0◦ + Qice melts + Qmelted ice warms = 0

cwmw (Tf − 20◦) + cimi (0◦ − (−10◦)) + LF mi + cwmi (Tf − 0◦) = 0

which yields, after using LF = 333 J/g and values cited in the problem, Tf = 12.24◦ which is equivalent
to Tf = 285.39 K. Sample Problem 20-2 shows that

∆Stemp change = mc ln

(

T2

T1

)

for processes where ∆T = T2 − T1 , and Eq. 20-2 gives

∆Smelt =
LF m

To

for the phase change experienced by the ice (with To = 273.15 K). The total entropy change is (with
T in Kelvins)

∆Ssystem = mwcw ln

(

285.39

293.15

)

+ mici ln

(

273.15

263.15

)

+ micw ln

(

285.39

273.15

)

+
LF mi

273.15

= −11.241 + 0.663 + 1.469 + 9.753 = 0.644 J/K .

20-26. (a) Eq. 20-11 leads to

ε = 1 −
TL

TH

= 1 −
333 K

373 K
= 0.107 .

We recall that a Watt is Joule-per-second. Thus, the (net) work done by the cycle per unit time
is the given value 500 J/s. Therefore, by Eq. 20-9, we obtain the heat input per unit time:

ε =
W

|QH|
=⇒

0.500 kJ/s

0.107
= 4.66 kJ/s .

(b) Considering Eq. 20-6 on a per unit time basis, we find 4.66 − 0.500 = 4.16 kJ/s for the rate of
heat exhaust.



20-27. (a) Energy is added as heat during the portion of the process from a to b. This portion occurs at
constant volume (Vb), so Qin = nCV ∆T . The gas is a monatomic ideal gas, so CV = 3

2
R and the

ideal gas law gives ∆T = (1/nR)(pbVb−paVa) = (1/nR)(pb−pa)Vb. Thus, Qin = 3
2
(pb−pa)Vb. Vb

and pb are given. We need to find pa. Now pa is the same as pc and points c and b are connected
by an adiabatic process. Thus, pcV

γ
c = pbV

γ
b and

pa = pc =

(

Vb

Vc

)γ

pb =

(

1

8.00

)5/3

(1.013 × 106 Pa) = 3.167 × 104 Pa .

The energy added as heat is

Qin =
3

2
(1.013 × 106 Pa − 3.167 × 104 Pa)(1.00 × 10−3 m3) = 1.47 × 103 J .

(b) Energy leaves the gas as heat during the portion of the process from c to a. This is a constant
pressure process, so

Qout = nCp ∆T =
5

2
(paVa − pcVc) =

5

2
pa(Va − Vc)

=
5

2
(3.167 × 104 Pa)(−7.00)(1.00× 10−3 m3) = −5.54× 102 J .

The substitutions Va − Vc = Va − 8.00Va = −7.00Va and Cp = 5
2
R were made.

(c) For a complete cycle, the change in the internal energy is zero and W = Q = 1.47×103 J−5.54×
102 J = 9.18 × 102 J.

(d) The efficiency is ε = W/Qin = (9.18 × 102 J)/(1.47 × 103 J) = 0.624.

20-32. (a) Using Eq. 19-54 for process D → A gives

pDV γ
D = pAV γ

A
p0

32
(8V0)

γ
= p0V

γ
0

which leads to

8γ = 32 =⇒ γ =
5

3

which (see §19-9 and §19-11) implies the gas is monatomic.

(b) The input heat is that absorbed during process A → B:

QH = nCp∆T = n

(

5

2
R

)

TA

(

TB

TA
− 1

)

= nRTA

(

5

2

)

(2 − 1) = p0V0

(

5

2

)

and the exhaust heat is that liberated during process C → D:

QL = nCp∆T = n

(

5

2
R

)

TD

(

1 −
TL

TD

)

= nRTD

(

5

2

)

(1 − 2) = −
1

4
p0V0

(

5

2

)

where in the last step we have used the fact that TD = 1
4
TA (from the gas law in ratio form —

see Sample Problem 19-1). Therefore, Eq. 20-10 leads to

ε = 1 −

∣

∣

∣

∣

QL

QH

∣

∣

∣

∣

= 1 −
1

4
= 0.75 = 75% .

20-35. A Carnot refrigerator working between a hot reservoir at temperature TH and a cold reservoir at temper-
ature TL has a coefficient of performance K that is given by K = TL/(TH −TL). For the refrigerator of
this problem, TH = 96◦ F = 308.7 K and TL = 70◦ F = 294.3 K, so K = (294.3 K)/(308.7 K−294.3 K) =
20.4. The coefficient of performance is the energy QL drawn from the cold reservoir as heat divided
by the work done: K = |QL|/|W |. Thus, |QL| = K|W | = (20.4)(1.0 J) = 20.4 J.
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1. This is an isothermal process so: Q = T∆S = (273 + 342)(5.3098− 3.6848) = 1000 kJ

2. These are isobaric processes so W = p∆V , and Q = ∆E + p∆V

(a) 1b→2: 3209 − 2456 + 15 × 103 · (.02491− .01034) = 753 + 219 = 972 kJ

(b) 3→4: 3297 − 2782 + 103 · (.4011 − .2042) = 515 + 197 = 712 kJ

3. The heat required 6b→1a approximated as a straight-line pV process: first work: W = (15 × 103 +
15) · (.00166− .00101−)/2 = 5 kJ then heat Q = ∆E + W = 1586 − 226 + 5 = 1365 kJ,

4. These are adiabatic processes so W = −∆E

(a) 2→3: 3209 − 2782 = 427 kJ

(b) 4→5: 3297 − 2578 = 719 kJ

5. The only useful work occurs in the turbine: 427+719=1146. The required heat: 1365+1000+972+712=4049,
for an efficiency of .28. (Note: this is well below actual: much of the 6b→1a heating is in fact done
with ‘used’ steam.) Carnot gives: 1 − 327/873 = .63.

6. Q = ∆E + p∆V = 226 − 2449 + 15(.00101− 10.0228) = −2220− 150 = −2370 kJ

7. m = Q/c∆T = 2370/4.186 ∗ 20 = 28 kg


