
19-25. (a) We use ǫ = LV /N , where LV is the heat of vaporization and N is the number of molecules per
gram. The molar mass of atomic hydrogen is 1 g/mol and the molar mass of atomic oxygen is
16 g/mol so the molar mass of H2O is 1+1+16 = 18 g/mol. There are NA = 6.02×1023 molecules
in a mole so the number of molecules in a gram of water is (6.02 × 1023 mol−1)/(18 g/mol) =
3.34× 1022 molecules/g. Thus ǫ = (539 cal/g)/(3.34× 1022/g) = 1.61× 10−20 cal. This is (1.61×
10−20 cal)(4.186 J/cal) = 6.76 × 10−20 J.

(b) The average translational kinetic energy is

Kavg =
3

2
kT =

3

2
(1.38 × 10−23 J/K) [(32.0 + 273.15)K] = 6.32 × 10−21 J .

The ratio ǫ/Kavg is (6.76 × 10−20 J)/(6.32 × 10−21 J) = 10.7.

19-29. (a) We use the ideal gas law pV = nRT = NkT , where p is the pressure, V is the volume, T is the
temperature, n is the number of moles, and N is the number of molecules. The substitutions
N = nNA and k = R/NA were made. Since 1 cm of mercury = 1333 Pa, the pressure is p =
(10−7)(1333) = 1.333 × 10−4 Pa. Thus,

N

V
=

p

kT
=

1.333 × 10−4 Pa

(1.38 × 10−23 J/K)(295 K)

= 3.27 × 1016 molecules/m
3

= 3.27 × 1010 molecules/cm
3

.

(b) The molecular diameter is d = 2.00 × 10−10 m, so, according to Eq. 19–25, the mean free path is

λ =
1

√
2πd2N/V

=
1

√
2π(2.00 × 10−10 m)2(3.27 × 1016 m−3)

= 172 m .

19-46. Two formulas (other than the first law of thermodynamics) will be of use to us. It is straightforward
to show, from Eq. 19-11, that for any process that is depicted as a straight line on the pV diagram —
the work is

Wstraight =

(

pi + pf

2

)

∆V

which includes, as special cases, W = p∆V for constant-pressure processes and W = 0 for constant-
volume processes. Further, Eq. 19-44 with Eq. 19-51 gives

Eint = n

(

f

2

)

RT =

(

f

2

)

pV

where we have used the ideal gas law in the last step. We emphasize that, in order to obtain work and
energy in Joules, pressure should be in Pascals (N/m2) and volume should be in cubic meters. The
degrees of freedom for a diatomic gas is f = 5.

(a) The internal energy change is

Eint c − Eint a =
5

2
(pcVc − paVa)

=
5

2

(

(2000 Pa)
(

4.0 m3
)

− (5000 Pa)
(

2.0 m3
))

= −5000 J .

(b) The work done during the process represented by the diagonal path is

Wdiag =

(

pa + pc

2

)

(Vc − Va) = (3500 Pa)
(

2.0 m3
)

which yields Wdiag = 7000 J. Consequently, the first law of thermodynamics gives

Qdiag = ∆Eint + Wdiag = −5000 + 7000 = 2000 J .



(c) The fact that ∆Eint only depends on the initial and final states, and not on the details of the
“path” between them, means we can write

∆Eint = Eint c − Eint a = −5000 J

for the indirect path, too. In this case, the work done consists of that done during the constant
pressure part (the horizontal line in the graph) plus that done during the constant volume part
(the vertical line):

Windirect = (5000 Pa)
(

2.0 m3
)

+ 0 = 10000 J .

Now, the first law of thermodynamics leads to

Qindirect = ∆Eint + Windirect = −5000 + 10000 = 5000 J .

19-54. (a) We use Eq. 19-54 with Vf/Vi = 1
2

for the gas (assumed to obey the ideal gas law).

piV
γ
i = pfV γ

f =⇒
pf

pi

=

(

Vi

Vf

)γ

= 21.3

which yields pf = (2.46)(1.0 atm) = 2.46 atm.

(b) Similarly, Eq. 19-56 leads to

Tf = Ti

(

Vi

Vf

)γ−1

= (273 K)(1.23) = 336 K .

(c) We use the gas law in ratio form (see Sample Problem 19-1) and note that when p1 = p2 then
the ratio of volumes is equal to the ratio of (absolute) temperatures. Consequently, with the
subscript 1 referring to the situation (of small volume, high pressure, and high temperature) the
system is in at the end of part (a), we obtain

V2

V1

=
T2

T1

=
273 K

336 K
= 0.813 .

The volume V1 is half the original volume of one liter, so

V2 = 0.813(0.50 L) = 0.406 L .

19-59. In the following CV = 3
2
R is the molar specific heat at constant volume, Cp = 5

2
R is the molar specific

heat at constant pressure, ∆T is the temperature change, and n is the number of moles.

(a) The process 1 → 2 takes place at constant volume. The heat added is

Q = nCV ∆T =
3

2
nR ∆T

=
3

2
(1.00 mol)(8.31 J/mol·K)(600 K − 300 K) = 3.740× 103 J .

Since the process takes place at constant volume the work W done by the gas is zero, and the
first law of thermodynamics tells us that the change in the internal energy is

∆Eint = Q = 3.740× 103 J .

(d) The process 2 → 3 is adiabatic. The heat added is zero. The change in the internal energy is

∆Eint = nCV ∆T =
3

2
nR ∆T

=
3

2
(1.00 mol)(8.31 J/mol · K)(455 K− 600 K) = −1.807 × 103 J .

According to the first law of thermodynamics the work done by the gas is

W = Q − ∆Eint = +1.807× 103 J .



(g) The process 3 → 1 takes place at constant pressure. The heat added is

Q = nCp ∆T =
5

2
nR ∆T

=
5

2
(1.00 mol)(8.31 J/mol · K)(300 K− 455 K) = −3.220× 103 J .

The change in the internal energy is

∆Eint = nCV ∆T =
3

2
nR ∆T

=
3

2
(1.00 mol)(8.31 J/mol · K)(300 K− 455 K) = −1.932 × 103 J .

According to the first law of thermodynamics the work done by the gas is

W = Q − ∆Eint = −3.22 × 103 J + 1.93 × 103 J = −1.288 × 103 J .

(j) For the entire process the heat added is

Q = 3.74 × 103 J + 0 − 3.22 × 103 J = 519 J ,

the change in the internal energy is

∆Eint = 3.74 × 103 J − 1.81 × 103 J − 1.93 × 103 J = 0 ,

and the work done by the gas is

W = 0 + 1.81 × 103 J − 1.29 × 103 J = 519 J .

(m) We first find the initial volume. Use the ideal gas law p1V1 = nRT1 to obtain

V1 =
nRT1

p1

=
(1.00 mol)(8.31 J/mol · K)(300 K)

(1.013 × 105 Pa)
= 2.46 × 10−2 m3 .

Since 1 → 2 is a constant volume process V2 = V1 = 2.46 × 10−2 m3. The pressure for state 2 is

p2 =
nRT2

V2

=
(1.00 mol)(8.31 J/mol · K)(600 K)

2.46 × 10−2 m3
= 2.02 × 105 Pa .

This is equivalent to 1.99 atm.

(o) Since 3 → 1 is a constant pressure process, the pressure for state 3 is the same as the pressure for
state 1: p3 = p1 = 1.013 × 105 Pa (1.00 atm). The volume for state 3 is

V3 =
nRT3

p3

=
(1.00 mol)(8.31 J/mol · K)(455 K)

1.013× 105 Pa
= 3.73 × 10−2 m3 .



MB.speed2.dat

bin count error P (v) δP (v)

center N
√

N (m/s)−1 (m/s)−1

50 11 3.3 0.00011 0.00003
150 82 9.1 0.00082 0.00009
250 190 14. 0.00190 0.00014
350 242 16. 0.00242 0.00016
450 195 14. 0.00195 0.00014
550 144 12. 0.00144 0.00012
650 84 9.2 0.00084 0.00009
750 37 6.1 0.00037 0.00006
850 12 3.5 0.00012 0.00003
950 3 1.7 0.00003 0.00002

MB.Vx2.dat

bin count error P (v) δP (v)

center N
√

N (m/s)−1 (m/s)−1

−825 2 1.4 0.00001 0.00001
−675 10 3.2 0.00007 0.00002
−525 32 5.7 0.00021 0.00004
−375 86 9.3 0.00057 0.00006
−225 161 13. 0.00107 0.00008
−75 234 15. 0.00156 0.00010

75 218 15. 0.00145 0.00010
225 168 13. 0.00112 0.00009
375 61 7.8 0.00041 0.00005
525 17 4.1 0.00011 0.00003
675 9 3.0 0.00006 0.00002
825 2 1.4 0.00001 0.00001

MB.speed2.dat: V (P ) = 350, V (rms) = 439.2, V (mean) = 406.6
V (P )/V (rms) = .797 vs .816, V (mean)/V (rms) = .926 vs .921

MB.Vx2.dat: V (P ) = −75, V (mean) = −16.9, (both nearly zero)
V (rms) = 252.2, V (rms) ⇒ T = 306 K,

1
3
439.22 = 64296.45 ≈ 63609.03 = 252.22
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∆T – + – – 0

∆Eint – + – – 0
Q – + 0 – –
W – + + 0 –

Most signs can be determined simply from the nature of the isothermal hyperbolas: cool is near the origin
and hot is large, positive p and V . I’ve plotted below the isotherms for temperatures of 300 K (starting
temperature), 200 K (temperature at the end of step a), and 455 K (temperature at the end of step c).
Again, this plot of isotherms was not required to answer this question, but a knowledge of the general shape
of isotherms makes finding many signs automatic. The sign of ∆T gives many answers: the sign of ∆Eint

always, and the sign of Q when there is a specific heat (CV and Cp)— and of course Q = 0 for step (c). For
isothermal process remember that Q = W . The sign of ∆T is not obvious in step (a): use pV ∝ T to see
that ∆T < 0. The temperature at the end of step (c) is not obvious, but V needs to be calculated to make
the sketch (use pV γ = constant), and the pV product shows that the temperature is greater than 300 K.
Thus ∆T < 0 for step (d). The sign of W should be clear, as it is the area under the curve. For future
reference, note that the sign of Q gives the sign of ∆S.
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