19-25. (a) We use € = Ly /N, where Ly is the heat of vaporization and N is the number of molecules per
gram. The molar mass of atomic hydrogen is 1g/mol and the molar mass of atomic oxygen is
16 g/mol so the molar mass of HoO is 1+1+16 = 18 g/mol. There are No = 6.02 x 10?3 molecules
in a mole so the number of molecules in a gram of water is (6.02 x 102> mol™')/(18 g/mol) =
3.34 x 10?2 molecules/g. Thus € = (539 cal/g)/(3.34 x 10??/g) = 1.61 x 10~2% cal. This is (1.61 x
10720 cal)(4.186 J /cal) = 6.76 x 10720 J.

(b) The average translational kinetic energy is
_3,n_3 —23 _ —21
K = SkT = S(138 x 1072 J/K) [(32.0 + 273.15) K] = 6.32 x 107> J .

The ratio /Koy, is (6.76 x 10720J)/(6.32 x 10721 J) = 10.7.

19-29. (a) We use the ideal gas law pV = nRT = NkT, where p is the pressure, V is the volume, T is the
temperature, n is the number of moles, and N is the number of molecules. The substitutions

N = nNj and k = R/Nj were made. Since 1cm of mercury = 1333 Pa, the pressure is p =
(1077)(1333) = 1.333 x 10~ *Pa. Thus,

N p 1.333 x 1074 Pa

V.~ kT (138 x 10 23J/K)(295K)

= 3.27 x 10'° molecules/m® = 3.27 x 10'° molecules/cm® .

(b) The molecular diameter is d = 2.00 x 10~1%m, so, according to Eq. 19-25, the mean free path is

1 1

)\ = =
V2rd2N/V  4/2m(2.00 x 10-19m)2(3.27 x 1016 m—3)

=172 m .

19-46. Two formulas (other than the first law of thermodynamics) will be of use to us. It is straightforward
to show, from Eq. 19-11, that for any process that is depicted as a straight line on the pV diagram —

the work is
i +Dr
Wstraight = <p ) pj) AV

which includes, as special cases, W = pAV for constant-pressure processes and W = 0 for constant-
volume processes. Further, Eq. 19-44 with Eq. 19-51 gives

where we have used the ideal gas law in the last step. We emphasize that, in order to obtain work and
energy in Joules, pressure should be in Pascals (N/m?) and volume should be in cubic meters. The
degrees of freedom for a diatomic gas is f = 5.

(a) The internal energy change is

5
Eintc - Einta = 5 (Pch - paVa)
g ((2000 Pa) (4.0m?*) — (5000 Pa) (2.0m?))
—5000 J .

(b) The work done during the process represented by the diagonal path is

Pa + Pe

Waiag = < > (Ve — Vi) = (3500 Pa) (2.0m?)

which yields Wgiag = 7000 J. Consequently, the first law of thermodynamics gives

Qaiag = AFing + Waiag = —5000 + 7000 = 2000 J .



(¢) The fact that AFj, only depends on the initial and final states, and not on the details of the
“path” between them, means we can write

A-Eim‘c - Eintc - Einta = —5000 J

for the indirect path, too. In this case, the work done consists of that done during the constant
pressure part (the horizontal line in the graph) plus that done during the constant volume part
(the vertical line):

Windirect = (5000 Pa) (2.0m?) + 0 = 10000 J .

Now, the first law of thermodynamics leads to
Qindirect = A-Eilﬂt + Windireet = —5000 + 10000 = 5000 J .

19-54. (a) We use Eq. 19-54 with V;/V; = 3 for the gas (assumed to obey the ideal gas law).
by Vi)’ 1.3
pVy =psV] = == (—) =2
e i \Vy
which yields py = (2.46)(1.0 atm) = 2.46 atm.
(b) Similarly, Eq. 19-56 leads to

ViV
Ty =T, (7) = (273K)(1.23) = 336 K .
f

(c) We use the gas law in ratio form (see Sample Problem 19-1) and note that when p; = py then
the ratio of volumes is equal to the ratio of (absolute) temperatures. Consequently, with the
subscript 1 referring to the situation (of small volume, high pressure, and high temperature) the
system is in at the end of part (a), we obtain

Vo T, 273K

222" _0813.
Vi T, 336K

The volume V; is half the original volume of one liter, so

V2 =0.813(0.50L) = 0.406 L .

19-59. In the following Cy = %R is the molar specific heat at constant volume, C,, = gR is the molar specific
heat at constant pressure, AT is the temperature change, and n is the number of moles.

a) The process 1 — 2 takes place at constant volume. The heat added is
(a) p p
3
Q = nCy AT = §nRAT
3
= 5(1.00 mol)(8.31 J/mol-K)(600 K — 300 K) = 3.740 x 103 7.

Since the process takes place at constant volume the work W done by the gas is zero, and the
first law of thermodynamics tells us that the change in the internal energy is

AFEi =Q =3.740 x 103J .

(d) The process 2 — 3 is adiabatic. The heat added is zero. The change in the internal energy is
AFE, = nCy AT = gnR AT

g(l.OO mol)(8.31 J /mol - K)(455 K — 600K) = —1.807 x 10° J .

According to the first law of thermodynamics the work done by the gas is

W =Q — AEj = +1.807 x 10% J .



(g) The process 3 — 1 takes place at constant pressure. The heat added is

QR = nOpAT:gnRAT

= g(l.()() mol)(8.31.J/mol - K)(300K — 455K) = —3.220 x 10° J .
The change in the internal energy is
AFE,. = nCy AT = gnR AT
= 3(1.00 mol)(8.31J/mol - K)(300K — 455 K) = —1.932 x 10° J .

According to the first law of thermodynamics the work done by the gas is
W=0Q—AEy; =-322x103J+1.93x10>J = -1.288 x 10 J .
For the entire process the heat added is
Q=374x102J+0—-3.22x103J =519 7J,
the change in the internal energy is
AFin =3.74%x10°J —1.81 x 10°J = 1.93 x 10°J =0 ,
and the work done by the gas is

W=0+181x10>J—1.29 x 10>°J =519 J .

We first find the initial volume. Use the ideal gas law p1 V7 = nRT; to obtain
T 1. 1)(8.31 1-K K
V1:nR 1:( 00 mol)(8.31 J/mo )(300 ):2.46><10_2m3.
P1 (1.013 x 105 Pa)

Since 1 — 2 is a constant volume process Vo = V; = 2.46 x 10~ ?m3. The pressure for state 2 is

nRT;  (1.00mol)(8.31J/mol - K)(600 K) .
P2 == 2.6 x 102 m? % a

This is equivalent to 1.99 atm.

Since 3 — 1 is a constant pressure process, the pressure for state 3 is the same as the pressure for
state 1: p3 = p; = 1.013 x 10° Pa (1.00 atm). The volume for state 3 is

nRT;  (1.00mol)(8.31 J/mol - K) (455 K) 9 3
Vo — — —3.73x 10 .
3= e 1.013 x 10° Pa x o




MB.speed2.dat

MB.Vx2.dat

bin  count error  P(v) dP(v)

center N VN (m/s)™'  (m/s)!
50 11 3.3 0.00011  0.00003
150 82 9.1 0.00082  0.00009
250 190  14. 0.00190  0.00014
350 242 16. 0.00242  0.00016
450 195  14. 0.00195  0.00014
550 144 12. 0.00144  0.00012
650 84 9.2 0.00084 0.00009
750 37 6.1  0.00037  0.00006
850 12 3.5 0.00012  0.00003
950 3 1.7 0.00003 0.00002

bin  count error  P(v) O0P(v)
center N VN (m/s)"'  (m/s)!
—825 2 1.4 0.00001  0.00001
—675 10 3.2 0.00007  0.00002
—525 32 5.7 0.00021  0.00004
—-375 86 9.3 0.00057  0.00006
—225 161 13. 0.00107  0.00008
—75 234 15. 0.00156  0.00010
75 218  15. 0.00145  0.00010
225 168  13. 0.00112  0.00009
375 61 7.8 0.00041  0.00005
525 17 4.1 0.00011  0.00003
675 9 3.0 0.00006  0.00002
825 2 1.4 0.00001  0.00001

MB.speed2.dat: V(P) = 350, V(rms) = 439.2, V(mean) = 406.6
V(P)/V(rms) = .797 vs .816, V(mean)/V (rms) = .926 vs .921

MB.Vx2.dat: V(P) = =75, V(mean) = —16.9, (both nearly zero)

V(rms) = 252.2, V(rms) = T = 306 K,

1439.22 = 64296.45 ~ 63609.03 = 252.2

MB.speed2.dat
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Most signs can be determined simply from the nature of the isothermal hyperbolas: cool is near the origin
and hot is large, positive p and V. D’ve plotted below the isotherms for temperatures of 300 K (starting
temperature), 200 K (temperature at the end of step a), and 455 K (temperature at the end of step c).
Again, this plot of isotherms was not required to answer this question, but a knowledge of the general shape
of isotherms makes finding many signs automatic. The sign of AT gives many answers: the sign of AF;,;
always, and the sign of () when there is a specific heat (Cy and Cp,)— and of course @ = 0 for step (c). For
isothermal process remember that @@ = W. The sign of AT is not obvious in step (a): use pV o« T to see
that AT < 0. The temperature at the end of step (c) is not obvious, but V needs to be calculated to make
the sketch (use pV?7 = constant), and the pV product shows that the temperature is greater than 300 K.
Thus AT < 0 for step (d). The sign of W should be clear, as it is the area under the curve. For future
reference, note that the sign of @ gives the sign of AS.
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