
18-38. The heat needed is found by integrating the heat capacity:

Q =
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= 81.8 cal .

18-39. (a) We work in Celsius temperature, which poses no difficulty for the J/kg·K values of specific heat
capacity (see Table 18-3) since a change of Kelvin temperature is numerically equal to the corre-
sponding change on the Celsius scale. There are three possibilities:

• None of the ice melts and the water-ice system reaches thermal equilibrium at a temperature
that is at or below the melting point of ice.

• The system reaches thermal equilibrium at the melting point of ice, with some of the ice
melted.

• All of the ice melts and the system reaches thermal equilibrium at a temperature at or above
the melting point of ice.

First, we suppose that no ice melts. The temperature of the water decreases from TWi = 25◦C to
some final temperature Tf and the temperature of the ice increases from TIi = −15◦C to Tf . If
mW is the mass of the water and cW is its specific heat then the water (loses) heat

Q = cW mW (0 − TWi) − mW LF + cImW (Tf − 0)

where LF is the heat of fusion for water. If mI is the mass of the ice and cI is its specific heat
then the ice absorbs heat

Q = mIcI(Tf − TIi) .

Since no energy is lost to the environment, these two heats must add to zero. Consequently,

cW mW (0 − TWi) − mW LF + cImW (Tf − 0) + mIcI (Tf − TIi) = 0 .

The solution for the equilibrium temperature is

Tf =
mW (cW TWi + LF ) + mIcITIi

(mW + mI)cI

=
200 g · [(4.19 J/g·K) · 25◦C + 333 J/g] + (100 g) · (2.22 J/g·K) · (−15◦C)

(200 g + 100 g)(2.22 J/g·K)

= 126◦C .

This is above the melting point of ice, which invalidates our assumption that no ice has melted.
That is, the calculation just completed does not take into account the melting of the ice and is
in error. Consequently, we start with a new assumption: that the water and ice reach thermal
equilibrium at Tf = 0◦C, with mass m (< mI) of the ice melted. The heat (lost, as Q < 0) by
the water is

Q = mW cW (0 − TWi) ,

and the heat absorbed by the ice is

Q = mIcI(0 − TIi) + mLF ,

where LF is the heat of fusion for water. The first term is the energy required to warm all the
ice from its initial temperature to 0◦C and the second term is the energy required to melt mass
m of the ice. The heats add to zero, so

mW cW TWi = −mIcITIi + mLF .



This equation can be solved for the mass m of ice melted:

m =
mW cW TWi + mIcITIi

LF

=
(4.19 J/g·K)(200 g)(25◦C) + (2.22 J/g·K)(100 g)(−15◦C)

333 J/g

= 52.9 g .

Since the total mass of ice present initially was 100 g, there is enough ice to bring the water
temperature down to 0◦C. This is then the solution: the ice and water reach thermal equilibrium
at a temperature of 0◦C with 53 g of ice melted.

To be complete we now consider the third option. (Nonsense is expected.) The heat (lost, as
Q < 0) by the water is

Q = mW cW (Tf − TWi) ,

and the heat absorbed by the ice is

Q = mI(cI(0 − TIi) + LF + cW (Tf − 0)) ,

where LF is the heat of fusion for water. The first term is the energy required to warm all the
ice from its initial temperature to 0◦C, the second term is the energy required to melt all the ice,
and the third is the energy required to bring the now melted ice up to the final temperature. The
heats add to zero:

0 = mW cW (Tf − TWi) + mI(cI(−TIi) + LF + cW Tf)

So:

Tf =
mW cW TWi + mI(cITIi − LF )

cW (mW + mI)

=
200 g · (4.19 J/g·K) · 25◦C + 100 g · (2.22 J/g·K) · (−15◦C) − 333 J/g)

(200 g + 100 g)(4.19 J/g·K)

= −12.5◦C .

(b) Now there is less than 53 g of ice present initially. All the ice melts and the final temperature is
above the melting point of ice. The heat (lost) by the water is

Q = mW cW (Tf − TWi)

and the heat (absorbed) by the ice (and the water it becomes when it melts) is

Q = mIcI(0 − TIi) + mIcW (Tf − 0) + mILF .

The first term is the energy required to raise the temperature of the ice to 0◦C, the second term
is the energy required to raise the temperature of the melted ice from 0◦C to Tf , and the third
term is the energy required to melt all the ice. Since the two heats cancel,

0 = mW cW (Tf − TWi) + mIcI(−TIi) + mIcW Tf + mILF .

The solution for Tf is

Tf =
mW cW TWi + mIcITIi − mILF

cW (mW + mI)
.

Inserting the given values, we obtain Tf = 2.52◦C.
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mCucCu(Tf − TCu i) + mW cW (Tf − TWi) + mIcI(0 − TIi) + mIcW (Tf − 0) + mILF = 0



Tf (mCucCu + mW cW + mIcW ) = mCucCuTCu i + mW cW TWi + mIcITIi − mILF

Tf =
mCucCuTCu i + mW cW TWi + mIcITIi − mILF

mCucCu + mW cW + mIcW

=
250 · 0.385 · 22 + 250 · 4.19 · 95 + 50 · 2.22 · (−10) − 50 · 333

250 · 0.385 + 250 · 4.19 + 50 · 4.19
= 61.8◦C

old exam: 2004/dean_211_thermo98.pdf #3

mCucCu(Tf − TCu i) + mW cW (Tf − TWi) + mIcI(0 − TIi) + mIcW (Tf − 0) + mILF = 0

Tf (mCucCu + mW cW + mIcW ) = mCucCuTCu i + mW cW TWi + mIcITIi − mILF

Tf =
mCucCuTCu i + mW cW TWi + mIcITIi − mILF

mCucCu + mW cW + mIcW

=
200 · 0.386 · 20 + 150 · 4.19 · 75 + 20 · 2.22 · (−10) − 20 · 333

200 · 0.386 + 150 · 4.19 + 20 · 4.19
= 52.7◦C

T1S.8 (Moore)

mAcA(Tf − TA) + mBcB(Tf − TB) = 0

Tf (mAcA + mBcB) = mAcATA + mBcBTB

Tf (u + 1) = uTA + TB

Tf (u + 1) = uTA + (1 + u − u)TB

Tf =
u

1 + u
(TA − TB) + TB

Clearly mAcA ≫ mBcB ⇒ u → ∞ ⇒ u/(1 + u) → 1 ⇒ Tf → TA

On the other hand: mAcA ≪ mBcB ⇒ u → 0 ⇒ u/(1 + u) → 0 ⇒ Tf → TB

18-48. Since the process is a complete cycle (beginning and ending in the same thermodynamic state) the
change in the internal energy is zero and the heat absorbed by the gas is equal to the work done by the
gas: Q = W . In terms of the contributions of the individual parts of the cycle QAB +QBC +QCA = W
and QCA = W − QAB − QBC = +15.0 J − 20.0 J − 0 = −5.0 J. This means 5.0 J of energy leaves the
gas in the form of heat.

18-49. (a) The change in internal energy ∆Eint is the same for path iaf and path ibf . According to the
first law of thermodynamics, ∆Eint = Q − W , where Q is the heat absorbed and W is the
work done by the system. Along iaf ∆Eint = Q − W = 50 cal − 20 cal = 30 cal. Along ibf
W = Q − ∆Eint = 36 cal− 30 cal = 6 cal.

(b) Since the curved path is traversed from f to i the change in internal energy is −30 cal and
Q = ∆Eint + W = −30 cal− 13 cal = −43 cal.

(c) Let ∆Eint = Eint, f − Eint, i. Then, Eint, f = ∆Eint + Eint, i = 30 cal + 10 cal = 40 cal.

(d) The work Wbf for the path bf is zero, so —using the result (a)— Wib = 6 cal. Qib = ∆Eint +W =
12 + 6 = 18 cal

(e) The work Wbf for the path bf is zero, so Qbf = Eint, f − Eint, b = 40 cal− 22 cal = 18 cal.

18-72. The net work may be computed as a sum of works (for the individual processes involved) or as the
“area” (with appropriate ± sign) inside the figure (representing the cycle). In this solution, we take
the former approach (sum over the processes) and will need the following fact related to processes
represented in pV diagrams:

for straight line Work =
pi + pf

2
∆V

The cycle represented by the “triangle” BC consists of three processes:



• “tilted” straight line from (1.0 m3, 40 Pa) to (4.0 m3, 10 Pa), with

Work =
40 Pa + 10 Pa

2

(

4.0 m3
− 1.0 m3

)

= 75 J

• horizontal line from (4.0 m3, 10 Pa) to (1.0 m3, 10 Pa), with

Work = (10 Pa)
(

1.0 m3
− 4.0 m3

)

= −30 J

• vertical line from (1.0 m3, 10 Pa) to (1.0 m3, 40 Pa), with

Work =
10 Pa + 40 Pa

2

(

1.0 m3
− 1.0 m3

)

= 0

Thus, the total work during the BC cycle is 75− 30 = 45 J. During the BA cycle, the “tilted” part is
the same as before, and the main difference is that the horizontal portion is at higher pressure, with
Work = (40 Pa)(−3.0 m3) = −120 J. Therefore, the total work during the BA cycle is 75−120 = −45 J.
Note that the area of either triangle is: 1

2
(30 Pa× 3 m3) = 45 J, so we can directly find the net work if

we apply the proper sign.


