
16-6. (a) The amplitude is ym = 6.0 cm.

(b) We find λ from 2π/λ = 0.020π: λ = 100 cm.

(c) Solving 2πf = ω = 4.0π, we obtainf = 2.0 Hz.

(d) The wavespeed is v = λf = (100 cm)(2.0 Hz) = 200 cm/s.

(e) The wave propagates in the negative x direction, since the argument of the trig function is kx+ωt
instead of kx − ωt (as in Eq. 16-2).

(f) The maximum transverse speed (found from the time derivative of y) is

umax = 2πfym =
(

4.0π s−1
)

(6.0 cm) = 75.4 cm/s .

(g) y(3.5 cm, 0.26 s) = (6.0 cm) sin[0.020π(3.5) + 4.0π(0.26)] = −2.03 cm.

16-13. The wave speed v is given by v =
√

τ/µ, where τ is the tension in the rope and µ is the linear
mass density of the rope. The linear mass density is the mass per unit length of rope: µ = m/L =
(0.0600 kg)/(2.00 m) = 0.0300 kg/m. Thus

v =

√

500 N

0.0300 kg/m
= 129 m/s .

16-19. (a) We read the amplitude from the graph. It is about 5.0 cm.

(b) We read the wavelength from the graph. The curve crosses y = 0 at about x = 15 cm and again
with the same slope at about x = 55 cm, so λ = 55 cm− 15 cm = 40 cm = 0.40 m.

(c) The wave speed is v =
√

τ/µ, where τ is the tension in the string and µ is the linear mass density
of the string. Thus,

v =

√

3.6 N

25 × 10−3 kg/m
= 12 m/s .

(d) The frequency is f = v/λ = (12 m/s)/(0.40 m) = 30 Hz and the period is T = 1/f = 1/(30 Hz) =
0.0333 s.

(e) The maximum string speed is um = ωym = 2πfym = 2π(30 Hz)(5.0 cm) = 942 cm/s = 9.42 m/s.

(f) The string displacement is assumed to have the form y(x, t) = ym sin(kx + ωt + φ). The angular
wave number is k = 2π/λ = 2π/(0.40 m) = 15.7 m−1.

(g) The angular frequency is ω = 2πf = 2π(30 Hz) = 188 rad/s,

(h) According to the graph, the displacement at x = 0 and t = 0 is 4.0× 10−2 m. The formula for the
displacement gives y(0, 0) = ym sinφ. We wish to select φ so that 5.0 × 10−2 sin φ = 4.0 × 10−2.
The solution is either 0.927 rad or 2.21 rad. In the first case the function has a positive slope at
x = 0 and matches the graph. In the second case it has negative slope and does not match the
graph. We select φ = 0.927 rad.

(i) A plus sign appears in the argument of the trigonometric function because the wave is moving in
the negative x direction. The amplitude is ym = 5.0 × 10−2 m

The expression for the displacement is

y(x, t) = (5.0 × 10−2 m) sin
[

(16 m−1)x + (190 s−1)t + 0.93
]

.

16-37. Adding the complex amplitudes: 4.6e0i + 5.6e.8πi = (.007, 3.29) = 3.29 6 1.55r

Now:
N
∑

k=1

ak sin(ωt + δk) = Im

[(

N
∑

k=1

akeiδk

)

eiωt

]

= A sin(ωt + φ)

where:

N
∑

k=1

akeiδk = A eiφ, so here:

N
∑

k=1

ak sin(ωt + δk) = 3.29 sin(ωt + 1.55)



(a) 3.29 mm

(b) 1.55r

(c) The sum of the first two waves is the “vector” 3.29 6 1.55r; with vector addition maximum extension
is achieved if the vectors added together are in the same direction. Hence to maximize the
amplitude of this wave the phase of the third wave should be the same as the sum of the first two:
1.55r

16-43. (a) Eq. 16-26 gives the speed of the wave:

v =

√

τ

µ
=

√

150 N

7.2 × 10−3 kg/m
= 144 m/s .

(b) From the Figure, we find the wavelength of the standing wave to be λ = (2/3)(90 cm) = 60 cm.

(c) The frequency is

f =
v

λ
=

1.4 × 102 m/s

0.60 m
= 241 Hz .

16-50. (a) The nodes are located from vanishing of the spatial factor sin 5πx = 0 for which the solutions are

5πx = 0, π, 2π, 3π, . . . =⇒ x = 0,
1

5
,
2

5
,
3

5
, . . .

so that the values of x lying in the allowed range are x = 0, x = 0.20 m, and x = 0.40 m.

(d) Every point (except at a node) is in simple harmonic motion of frequency f = ω/2π = 40π/2π =
20 Hz. Therefore, the period of oscillation is T = 1/f = 0.050 s.

(e) Comparing the given function with Eq. 16-56 through Eq. 16-60, we obtain

y1 = 0.020 sin(5πx − 40πt) and y2 = 0.020 sin(5πx + 40πt)

for the two traveling waves. Thus, we infer from these that the speed is v = ω/k = 40π/5π =
8.0 m/s.

(f) And we see the amplitude is ym = 0.020 m.

(g) The derivative of the given function with respect to time is

u =
∂y

∂t
= − (0.040) (40π) sin(5πx) sin(40πt)

which vanishes (for all x) at times such sin(40πt) = 0. Thus,

40πt = 0, π, 2π, 3π, . . . =⇒ t = 0,
1

40
,

2

40
,

3

40
, . . .

so that the values of t lying in the allowed range are t = 0, t = 0.025 s, and t = 0.050 s.

16-82. (a) Since the string has four loops its length must be two wavelengths. That is, λ = L/2, where λ is
the wavelength and L is the length of the string. The wavelength is related to the frequency f
and wave speed v by λ = v/f , so L/2 = v/f and L = 2v/f = 2(400 m/s)/(600 Hz) = 1.33 m.

(b) We write the expression for the string displacement in the form y = ym sin(kx) cos(ωt), where ym

is the maximum displacement, k is the angular wave number, and ω is the angular frequency. The
angular wave number is k = 2π/λ = 2πf/v = 2π(600 Hz)/(400 m/s) = 9.42 m−1 and the angular
frequency is ω = 2πf = 2π(600 Hz) = 3770 rad/s. ym is 2.0 mm. The displacement is given by

y(x, t) = (2.0 mm) sin[(9.42 m−1)x] cos
[

(3770 s−1)t
]

.

16-83. To oscillate in four loops means n = 4 in Eq. 16-65 (treating both ends of the string as effectively
“fixed’). Thus, λ = 2(0.90 m)/4 = 0.45 m. Therefore, the speed of the wave is v = fλ = 27 m/s. The
mass-per-unit-length is µ = m/L = (0.044 kg)/(0.90 m) = 0.0489 kg/m. Thus, using Eq. 16-26, we
obtain the tension: τ = v2µ = (27)2(0.0489) = 35.6 N.


